Interactive Visual Data Exploration with Spark in Databricks Cloud

Hossein Falaki
@mhfalaki
About Databricks

Founded by creators of Apache Spark

Offers Spark as a service in the cloud

Dedicated to open source Spark
 › Largest organization contributing to Apache Spark
 › Drive the roadmap
Databricks Cloud

Databricks Workspace
- Notebooks
- Dashboards
- Job launcher

Databricks Platform
- Latest version
- Configured / Optimized

- Start clusters in seconds
- Dynamically scale up & down
Spark

Fast & General distributed computing engine: batch, streaming, iterative

Capable of handling petabytes of data

Even faster by caching data in-memory

Versatile programming interfaces
// Query an existing table and get results back as Schema RDD
rdd = hiveContext.sql("select article, text from wikipedia")

// Perform transformations
words = rdd.flatMap(lambda r: r.text.split())

// Collect sample of data in driver machine
sampled_words = words.sample(fraction = 0.001)
Databricks Platform

- Start clusters in seconds
- Zero-cost management
- Dynamically scale up and down
Databricks Workspace

Notebooks

› SQL
› Python
› Scala

Dashboards

Job Launcher
Notebooks

Supports Python, Scala, SQL

Interactive commands and plots

On-line collaboration
Dashboards

WYSIWYG Builder

Interactive jobs

On-click publishing

Exporting from notebooks
Job Launcher

Elastic Jobs New Job

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Recent Runs</th>
<th>Active</th>
<th>Minimize</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Basket</td>
<td>05/05/2014 06/02/2014</td>
<td>Today at 8:57 PM Cluster: Default Cluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td>Actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>databricks/analysis/transform.jar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triggers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Every Week: Monday</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sales Dashboard ETL | Today at 8:00 PM Today at 7:00 PM Today at 9:00 PM Today at 10:00 PM Today at 11:00 PM | Tomorrow at 12:00 AM Cluster: Default Cluster | Edit | Remove |

Fraud Model Training	06/05/2014 Last Tuesday at 1:00 AM Last Wednesday at 1:00 AM Last Thursday at 1:00 AM Last Friday at 1:00 AM Last Saturday at 1:00 AM Yesterday at 1:00 AM	Actions		
		databricks/ml/training.jar		
		Triggers		
		Daily: 1am		

 Runs arbitrary Spark jobs programmatically

Expository vs. Exploratory

We wish all the people in the Bay Area who were affected by the earthquake a speedy recovery and a good night's sleep.
Large data
“Visualization is critical to data analysis.”

William S. Cleveland

But we often skip exploratory visualization with large data
Challenges

1. Interactivity
 with large data is challenging

2. Visual medium
 cannot accommodate as many pixels as data points
Solutions

1. Interactivity
 In-memory computation
 High parallelism
Reducing interaction latency with Spark

1. In-memory computation
 - Significantly reduces latency

2. High parallelism
 - Get more executors with Mesos or Yarn: a challenge in itself
 - Click a button to increase cluster size in Databricks Cloud
Versatile programming interface

Data visualization is very much like programming.
 › Point and click doesn’t really cut it
 › Requires an API (grammar): ggplot, matplotlib, bokeh, etc.

Spark has SQL, Scala, Python, Java and (experimental) R API

Libraries for distributed statistics and machine learning
Solutions

1. Interactivity
 - In-memory computation
 - High parallelism

2. Visual medium
 - In-browser collaborative notebooks
 - Summarizing, Sampling and Modeling
More data points than pixels

Can we visualize 200GB of multidimensional data?

Short answer: no

Long answer:
› Summarize & visualize
› Sample & visualize
› Model & visualize
Summarize and visualize

Extensively used by BI tools

› Aggregation
› Pivoting

Most data scientists’ nightly jobs summarize data
Sample and visualize

Sometimes we need to visualize (feel) individual data points.

Sampling is extensively used in statistics.

Spark offers native support for:

- Approximate and exact sampling
- Approximate and exact stratified sampling

Approximate sampling is faster and is good enough in most cases.
Model and visualize

MLLib supports a large (and growing) set of distributed algorithms

- Clustering: k-means
- Classification and regression: LM, DT, NB
- Dimensionality reduction: SVD, PCA
- Collaborative filtering: ALS
- Correlation, hypothesis testing
Summary

With new big data tools we can resume interactive visual exploration of data

Using Spark we can manipulate large data in seconds
 › Cache data in memory
 › Increase parallelism

To visualize millions of data points we can
 › Summarize
 › Sample
 › Models
Databricks Cloud
Apache Spark
Matplotlib
Python ggplot
D3
databricks.com
spark.apache.org
matplotlib.org
ggplot.yhathq.com
d3js.org