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ABSTRACT
There is a fundamental tradeoff between effectiveness and ef-
ficiency when designing retrieval models for large-scale docu-
ment collections. Effectiveness tends to derive from sophis-
ticated ranking functions, such as those constructed using
learning to rank, while efficiency gains tend to arise from
improvements in query evaluation and caching strategies.
Given their inherently disjoint nature, it is difficult to jointly
optimize effectiveness and efficiency in end-to-end systems.
To address this problem, we formulate and develop a novel
cascade ranking model, which unlike previous approaches,
can simultaneously improve both top k ranked effectiveness
and retrieval efficiency. The model constructs a cascade of
increasingly complex ranking functions that progressively
prunes and refines the set of candidate documents to mini-
mize retrieval latency and maximize result set quality. We
present a novel boosting algorithm for learning such cas-
cades to directly optimize the tradeoff between effectiveness
and efficiency. Experimental results show that our cascades
are faster and return higher quality results than comparable
ranking models.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Algorithms, Performance

Keywords: learning to rank, effectiveness, efficiency

1. INTRODUCTION
There is often a tension between effectiveness and effi-

ciency when building information retrieval systems. To a-
chieve greater effectiveness (i.e., to deliver higher quality
results), system designers are driven towards complex rank-
ing functions that may combine evidence from dozens, hun-
dreds, or even thousands of relevance signals, typically using
sophisticated machine learning techniques [16]. This fre-
quently comes at a cost in efficiency (i.e., a slower system),
since complex ranking functions are computationally expen-
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sive, thus requiring more resources to achieve the same level
of service. On the other hand, efficiency can be enhanced
through a variety of approaches such as index pruning, fea-
ture pruning, approximate query evaluation, and systems
engineering. However, most of these approaches degrade ef-
fectiveness, typically in ways that are difficult to control.

With the goal of achieving a better balance between re-
trieval effectiveness and efficiency, recent work has explored
approaches to ranking that exhibit good tradeoff character-
istics [27, 28]. In general, they work by eliminating features
that are costly to compute and not predicted to contribute
much to the quality of the results. While efficiency-minded
feature selection is a natural way to make existing models
faster, such pruning may negatively affect retrieval effective-
ness. This problem is exacerbated for very large collections
under tight efficiency constraints. In this setting, only a
small handful of cheap features can be used for ranking,
which can result in poor retrieval effectiveness.

We introduce a novel cascade ranking model for efficient
ranked retrieval. Unlike previous approaches, the cascade
uses a sequence of increasingly complex ranking functions
to progressively prune documents and refine the rank order
of non-pruned documents. Thus, the cascade model views
retrieval as a multi-stage progressive refinement problem,
where each stage considers successively richer and more com-
plex ranking models, but over successively smaller candidate
document sets. The intuition is that although complex fea-
tures are generally more time-consuming to compute, addi-
tional overhead is offset by the fact that fewer documents
are examined. This type of ranking paradigm is well-suited
for large document collections, because the number of rel-
evant documents is very small compared to the collection
size. Hence, the ability to quickly hone in on a small set
of candidate documents, via the cascade, can yield higher
quality results and faster query execution times.

To achieve a desired efficiency-effectiveness tradeoff, we
describe a novel boosting algorithm, a generalization of Ada-
Rank [30], that jointly learns the model structure (i.e., op-
timal sequence of ranking stages) and the set of documents
to prune at each stage. Experiments show that our cas-
cade model can simultaneously improve effectiveness and ef-
ficiency compared to non-cascade feature-based models.

This paper has three major contributions. The first is
the cascade model itself. Although similar coarse-to-fine-
grained models have been used in other disciplines, to our
knowledge this is the first application of this principle for
learning an efficient ranking model. Second, we introduce
a novel boosting algorithm for learning ranking cascades,
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complete with a theoretical analysis. Finally, we carry out
an extensive evaluation of our proposed model on several
web collections. Results show that the cascade model con-
sistently outperforms current state-of-the-art models, both
in terms of efficiency and effectiveness.

The remainder of the paper is organized as follows: Sec-
tion 2 describes related work. Section 3 details our proposed
cascade ranking model, and Section 4 presents how cascade
models can be learned. Next, Section 5 describes experi-
mental results. Finally, Section 6 concludes the paper and
outlines possible directions for future work.

2. RELATED WORK
In recent years, we have witnessed the success of machine

learning approaches to the document ranking problem, as
a whole known as learning to rank (e.g., [6, 17, 9, 30, 16],
just to name a few). For the most part, however, these
approaches have focused exclusively on effectiveness, some-
times leading to ranking functions that deliver high qual-
ity results, but are unbearably slow. Recently, however, a
thread of work has emerged, dubbed learning to efficiently
rank, that adopts an efficiency-minded approach. For ex-
ample, regularization is useful for “encouraging” models to
have few non-zero parameters, thereby serving as a crude
form of feature pruning [24, 11]. More recently, Wang et
al. [27, 28], in two separate studies, proposed linear ranking
models that explicitly account for feature costs: the first is
able to discover a more optimal point in the tradeoff space
between efficiency and effectiveness, while the second is able
to perform feature pruning to meet an externally-imposed
time constraint. With feature pruning, the retrieval engine
still implements a single monolithic ranking function—and
thus it remains necessary to compute complex features for
many documents (which is especially problematic for large
web collections). In addition, since the number of non-
relevant documents is significantly larger than the number
of relevant documents in web-scale collections [8], applying
a monolithic ranking model (even if used with a fast query
evaluation engine) may waste computations, because a large
number of the documents examined are non-relevant. In
contrast, the cascade model considers increasingly complex
features/ranking models on progressively fewer candidate
documents. This approach, as we will show in the exper-
iments, results in ranking functions that are simultaneously
effective and efficient.

Our work is complementary to query evaluation [5, 25,
23]. Query evaluation focuses on how to efficiently evaluate
a given ranking model, where we aim to learn an efficient
ranking model in the first place. Along a similar direction,
Cambazoglu et al. [8] explored early-exit strategies for addi-
tive ensembles. Although this approach bears some super-
ficial resemblance to our cascade model, it is in fact com-
pletely different. They focus on optimizing the query eval-
uation process given a particular additive ensemble—and
not about learning the ensemble. In contrast, our proposed
model is accompanied by a boosting algorithm for learning
optimal cascades according to a tradeoff metric.

A complementary approach to fast query evaluation is in-
dex pruning [10, 20]. Since query evaluation time monotoni-
cally increases with length of postings lists, shorter postings
lists translate into faster queries. While discarding postings
help reduce query latency, it does not directly optimize the
underlying effectiveness and efficiency tradeoffs.

Finally, a variety of system engineering strategies exist to
increase search efficiency, especially in operational settings.
Caching [2, 21] reduces query latency significantly. Parti-
tioning the document collection reduces latency, while repli-
cation of services increases throughout [12, 3]. These strate-
gies are not IR-specific, but represent general principles for
building large-scale distributed systems. In particular, we
are not concerned with the system engineering aspects of ef-
ficiency (caching, partitioning, and replication), since these
techniques can be applied to the cascade model just as they
can be applied to any retrieval algorithm. These system en-
gineering aspects can be viewed as orthogonal to our learn-
ing framework; their effects are captured by our analytical
model of query execution time, which simply serves as an
input to our task of learning an efficient ranking model.

The idea of progressive refinement in the cascade model
is related to the general class of coarse-to-fine models that
have been successfully applied in computer vision and ma-
chine learning [26, 29]. Most notably, Viola and Jones [26]
tackled the problem of real-time face detection in images by
a sequence of binary classifiers of increasing complexity, such
that the most unlikely images are rejected early by simple
classifiers, and the more promising object-like regions are
passed to more complex classifiers for further consideration.
However, these models are for high recall/precision appli-
cations and cannot be used for ranked retrieval, since they
can only filter, but not rank items. As we will show, our
proposed cascade is specifically built for achieving high top
k ranked effectiveness in a very efficient manner.

3. CASCADE MODEL
In web search, there are significantly more non-relevant

documents than relevant documents and most users only
browse the top few results. Applying a monolithic ranking
model for each query, even if used in conjunction with fast
query evaluation techniques (e.g., [5, 25, 23]), may not be
very efficient because a large number of scored documents
are likely to be non-relevant and/or will not appear in the
top k. Our proposed cascade model leverages these facts to
achieve high top k ranked effectiveness in a highly efficient
manner by constructing ranking models from simple to com-
plex, applying the simple ones first, and pruning documents
at each subsequent stage so that more complex (and better)
ranking models are computed over fewer documents.

The cascade model consists of an additive sequence of
stages {S1...ST }, where each stage St is associated with a
pruning function Jt and a local ranking function Ht. Each
stage receives as input the set of ranked documents from the
previous stage and applies two sequential operations: first,
the pruning function Jt is used to remove a number of docu-
ments from the input set (thus reducing the amount of effort
involved in document scoring); then, the score contribution
of the local ranking function Ht is added to the candidate
documents still under consideration (to improve top k qual-
ity of the remaining documents). The results are forwarded
to the next cascade stage for further pruning and re-ranking.

By construction, the cascade is arranged so that the local
ranking functions increase in cost (and thus, complexity).
Early stages take advantage of “cheap” ranking models to
rank documents; the pruning functions discard documents
that are unlikely to appear in the final top k. As a re-
sult, each successive stage is presented with a smaller candi-
date set, which enables the cascade to exploit more complex
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Figure 1: An example cascade. After an initial ranking function H0, each stage consists of two sequential
operations: Jt prunes the input ranked documents, then a local ranking function Ht refines the rank order of
the retained documents. The new ranked list is passed to the next stage. The size of the shaded area denotes
the size of the candidate documents. Subscripts for each ranked list denotes the sequence of actions applied.

and costly ranking models—hence improving effectiveness—
without sacrificing efficiency.

As an example, Figure 1 presents a cascade model. The
input to the cascade is a set of documents for a given query,
and the final output is a ranked list of k documents (where
k is specified in advance). An initial ranking function H0 is
applied to obtain an initial ranked list, R{H0}, which is then
passed as input to the first stage. At the first cascade stage,
the pruning function J1 prunes documents in R{H0} based
on features of these documents (details in Section 3.1). The
output from the pruning operation, denoted by R{H0,J1}, is
re-ranked by adding the contribution of H1 to the document
scores. This process repeats for the next cascade stage.

The overall score of a non-pruned document di at the end
of a cascade model with T stages has the following form:

fT (di) =

TX
t=1

αt ·Ht (1)

where αt denotes the importance of the local model Ht.
Following previous work in learning to rank, each Ht is a
“weak ranker”. We postpone discussing the actual ranking
functions and our feature set until Section 4.

The iterative pruning and scoring mechanisms of the cas-
cade provide a way to explicitly control the tradeoff between
retrieval efficiency and ranked effectiveness. In terms of effi-
ciency, the cascade aims to reduce the number of candidate
documents at each stage:

|R{·,Jt}| ≤ |R{·,Jt−1}| ≤ . . . |R{·,J1}| (2)

where each |R{·,Jt}| denotes the resulting size of the docu-
ments after pruning at stage t, and the · abbreviates the pre-
vious sequence of pruning and re-ranking actions that have
been applied to the input ranked documents R. In terms of
effectiveness, the cascade aims to achieve the following:

E(R{·,Ht}) ≥ E(R{·,Ht−1}) ≥ . . . E(R{H0}) (3)

where E(R{·,Ht}) denotes the resulting top k effectiveness
from applying Ht to refine the overall scores of the non-
pruned documents that have reached St.

We can trivially obtain the most desirable outcome for
either Equation (2) or Equation (3) at the expense of the
other. If we set the pruning functions to never discard any
documents, then the final ranked effectiveness E(R{·,Ht})
will be as high as possible since there will be no “loss” due
to pruning. However, the cascade will likely be inefficient.
Alternatively, if we prune every document, the result will
almost certainly be fast, but ineffective. Thus, the objective
is to design a well-balanced cascade by jointly learning the
local ranking and pruning functions, guided by a tradeoff
metric. We describe exactly such an algorithm in Section 4.

Before proceeding, a comment about the order in which

pruning and re-ranking is performed at each stage: the prun-
ing function is applied on the ranked documents produced
from the previous stage, i.e., Jt reduces the size of the output
documents from stage t − 1. The reason behind this order-
ing is that while the local ranking function Ht−1 used at the
previous stage helps to refine the top k ranked effectiveness,
pruning its re-ranked documents has a direct impact on the
efficiency of stages t, t+1, . . . , T . If the pruning is aggressive,
then fewer documents will reach t, t+ 1, . . . , T , thereby im-
proving efficiency. Therefore, when learning the cascade, the
pruning function defined for output documents from t − 1
should (ideally) be jointly selected with the ranking func-
tions at t, t+ 1, . . . , T . For example, if Ht is complex, then
pruning documents from t − 1 must be aggressive to make
it feasible to apply Ht; on the other hand, if Ht is simple,
then more documents from t − 1 may be kept and scored.
While it would be ideal to jointly consider the pruning func-
tion with all subsequent ranking functions, this significantly
complicates learning. Instead, we only consider the pruning
function for documents produced from t−1 with the current
ranking model Ht at stage t. To instantiate a cascade, we
need to define the pruning functions, discussed next.

3.1 Pruning functions
At the input of each cascade stage t, we receive a set of

ranked documents R{·,Ht−1} passed from the previous stage,
which are then filtered by the pruning function Jt. Since we
have complete rank and score information for these input
documents (up to stage t− 1), the pruning function Jt can
utilize their global rank and score. There are many ways
to prune documents based on such global information: both
rank-based [8] and score-based pruning methods [8, 1] have
been proposed in the past. A key benefit of our model is
that it is highly modular and flexible—the cascade is not
restricted to a single pruning technique, but different stages
can use different pruning functions Jt, which may be better
suited to work with its corresponding local model Ht. This
allows us to simply treat the different pruning methods as
“pruning features”, which can be selected at each stage. Our
goal is not to develop novel pruning methods, but rather to
use existing methods as building blocks within our model.

In this section, we present three pruning methods (Jt)
that we have found to work well in our experiments. Each
of these methods is parameterized by a pruning threshold βt.
The first two use document rank and score information to
prune, while the third also considers the score distribution.

Rank-based. This pruning method uses document rank
to eliminate a desired proportion of the input documents at
each stage. The rank-based cutoff is defined as follows:

RankCutoff(βt) : (1− βt) · |R{·,Ht−1}|

A document is pruned if it ranks below this cutoff value,
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where βt here is the pruning parameter, and |R{·,Ht−1}| is
the size of input documents at stage t. Large values of βt
lead to more aggressive pruning, i.e., βt = 1 means all doc-
uments are discarded.

Score-based. Document scores provide another signal for
pruning. Document scores for different queries are different,
so enforcing a common score threshold is unlikely to work
well. Instead, the score threshold is defined relative to the
score range in each input document set:

ScoreCutoff(βt) : βt · ScoreRanget−1 + MinSt−1

Where ScoreRanget−1 is defined to be the difference be-
tween the maximum and minimum scores in input R{·,Ht−1}
and MinSt−1 is the minimum score in R{·,Ht−1}. This is
equivalent to normalizing each score into [0, 1] by using the
maximum and minimum scores in the candidate set. A doc-
ument is pruned if it scores less than this threshold, where
βt is the pruning parameter. As before, large value of βt
leads to more aggressive pruning.

Mean-Max threshold. Often it is useful to consider the
document score distribution for pruning. Several previous
studies [14, 1] have considered the problem of inferring the
score distributions of relevant and non-relevant documents,
which are then used to help identify the best cutoff threshold
for the top k documents in the ranked list to optimize a given
evaluation metric. However, these methods only work for
set-based measures such as F-measure and precision/recall,
and do not work for top k ranked effectiveness measures.

We instead adopt a variant of this approach, and use a
mean-max threshold function to capture characteristics of
the score distribution, defined as a combination of the mean
and the max of the input document scores:

MeanMax(βt) : βt ·MaxSt−1 + (1− βt) ·MeanSt−1

Where MaxSt−1 and MeanSt−1 are the maximum and mean
scores in inputR{·,Ht−1}, respectively. A document is pruned
if it scores less than this mean-max threshold. Similar ap-
proaches for using a mean-max threshold to control runtime
scoring/prediction complexity have been used in the NLP
task of structured prediction [29]. This formulation has the
advantage that the pruning function can be better suited for
each individual ranked list of documents.

4. LEARNING THE CASCADE
We now turn to the problem of learning a well-balanced

cascade that optimizes a desired tradeoff between retrieval
efficiency and ranked effectiveness. The entire cascade is
defined by {<Jt(βt), Ht, αt>}, for t = 1, . . . , T : Jt(βt) is
the pruning function and associated parameter (Section 3.1),
and Ht is the local ranking model (described below) with its
associated weight αt.

Before we can learn a cascade, we must define how we
measure top k ranked effectiveness and retrieval efficiency.
For effectiveness, our primary measure is NDCG at k, al-
though other metrics defined over top k rankings can easily
be used instead. For retrieval efficiency, we use a cost model
to estimate the execution cost of a given cascade. Retrieval
engine details, such as query evaluation and caching strate-
gies, are orthogonal to our general framework since their
effects on query execution are captured by our cost model
and simply serve as input to our learning algorithm.

4.1 Cost estimation
The total cost of cascade S = {St}, t = 1, . . . , T for query

qi, denoted by C(S, qi), is the sum of individual stage costs:

C(S, qi) =

TX
t=1

C(St, qi) (4)

The cost of each stage is determined by the complexity of Ht
and how many documents will be evaluated by Ht. We let
Ut denote the unit cost of evaluating Ht over each document.
The total cost of Ht at stage St is given by:

C(St, qi) = Ut · |Ri{·,Jt}| (5)

where |Ri{·,Jt}| denotes the size of the non-pruned docu-
ments after applying Jt. Intuitively, this cost model captures
the fact that evaluating a more complex model over a large
number of documents will result in greater time complexity.

The exact value of Ut depends on the implementation de-
tails of the search engine. Several previous studies have pro-
posed strategies for estimating retrieval costs [7, 25]. The
most common approach is directly fitting Ut to the actual
query execution time of the ranking model [7]. We use this
common approach for estimating Ut, where we run each Ht
on the set of training queries, record its time, and set Ut
to be the total time taken divided by the number of docu-
ments evaluated by Ht. For convenience, we normalize the
unit costs so that the cheapest feature has a cost of one.

Finally, the query execution costs are unbounded, which
makes them difficult to work with when learning a model.
Therefore, we need to map the costs into the range [0, 1].
This is accomplished by using an exponential decay func-
tion exp(−δ C(S, qi)) to transform the cost into the [0, 1]
interval (δ = 0.01 in our experiments). Other normalization
techniques, such as computing the maximum cost (e.g., cost
of applying the most expensive feature to every document in
the collection) and then using it as a normalization factor,
are also possible. However, this particular alternative may
not differentiate costs very well since the cost distribution is
likely to be skewed.

4.2 Tradeoff metric
The cascade learning problem is a multi-objective opti-

mization problem [22]. The final objective metric is obtained
by linearly combining the multiple objectives, which, in our
case are the top k ranked effectiveness and the cost of the
cascade model S. For a given query qi, the tradeoff is defined
as follows:

T(S, qi) = E(S, qi)− γ · C(S, qi)

where E(S, qi) represents ranked effectiveness, C(S, qi) is
the computational cost (Equation 4), and γ ∈ [0, 1] is a
parameter that controls the relative importance between ef-
fectiveness and efficiency. Note that E(S, qi) and E(fT , qi)
mean the same thing, i.e., the effectiveness achieved by a
cascade S with T stages (by Equation 1); in cases where we
wish to draw attention to the ranking of the cascade, we use
fT for convenience. From the tradeoff definition, it should
be clear that as we add more stages to a cascade, the total
cost will increase. Therefore, in order to improve the trade-
off metric, the effectiveness gain from adding extra stages
must counteract their costs.
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Algorithm 1: Boosting algorithm for cascade learning

Initialize distribution P1(qi) = 1/N , where N is the
number of queries and qi denotes a query;

Initialize cascade model S = {};
for t = 1, . . . , T do
• Select a cascade stage St=<Jt(βt), Ht, ·> over the
training instances weighted by Pt

• Set feature weight αt for Ht:

αt = 1
2
ln

P
qi

Pt(qi)
1−γ·C(St,qi)

·(1+E(St,qi))P
qi

Pt(qi)
1−γ·C(St,qi)

·(1−E(St,qi))
;

• Add full stage <Jt(βt), Ht, αt> to S;

• Update distribution Pt+1:

Pt+1(qi) = exp(−E(S,qi))exp(γ·C(S,qi))P
qi
exp(−E(S,qi))exp(γ·C(S,qi))

;

end
return cascade model S

4.3 Learning
We now turn to the problem of learning the best cascade

model. The general setup is that given a set of ranking
features (described later in Section 4.4), pruning functions
(Section 3.1), and training queries with their associated rel-
evance judgments, we want to learn a cascade to optimize a
given tradeoff metric, where the cascade model is character-
ized by {<Jt(βt), Ht, αt>}, t = 1, . . . , T .

We propose a novel boosting algorithm, a generalization
of AdaRank [30], that jointly learns the cascade structure
and parameters. It is important to note that we can not
simply use AdaRank to optimize our tradeoff metric because
AdaRank assumes linearity of its optimization metric O, i.e.,
O(St−1 + αtSt, qi) ≈ O(St−1, qi) + αtO(St, qi), where St−1

denotes the additive model up to stage t − 1, St is a stage
and αt is the local weight [30, 16]. Note that each AdaRank
stage consists of only Ht (a weak learner), since it does not
perform document pruning. The tradeoff metric T does not
satisfy the assumption because αt in our case is not defined
over the entire stage St, since in addition to Ht, the stage
has a pruning function Jt for document reduction as well.

Our boosting algorithm for jointly optimizing top k ranked
effectiveness and retrieval efficiency in a unified framework
is shown in Algorithm 1. The algorithm proceeds in rounds
to sequentially learn a set of cascade stages to optimize over
weighted training instances. Each training instance (a query
qi) has an associated importance weight, denoted by Pt(qi).
Initially, the weight distribution is set to uniform, and is
updated at the end of each iteration. At each iteration, the
parameterized pruning function Jt(βt) and the weak ranker
Ht are first constructed based on the weighted training data.
We describe this construction in more detail in Section 4.4.

Once Jt(βt) and Ht are chosen, the algorithm selects the
local weight αt > 0 for the ranker Ht, where E(St, qi) and
C(St, qi) in the formula denote the effectiveness and cost,
respectively, from evaluating Ht on the reduced set of doc-
uments (after Jt). Intuitively, αt captures the effectiveness
of Ht over weighted training instances.

Once αt is selected, we add the fully constructed stage to
the current cascade model. The weight distribution Pt+1 is
then updated using the cost and effectiveness from the over-

all cascade (as defined in the previous section). The weights
on the underperforming queries (i.e., queries that have poor
ranked effectiveness, yet are expensive to compute) are in-
creased, so the subsequent iteration can focus more on im-
proving those hard queries. Note that H0, the first stage in
the cascade, is not associated with any pruning. Stage H0

simply scores and passes a set of top hits R{H0} to the first
cascade stage (in our experiments, |R{H0}| = 20, 000).

4.4 Cascade Stage Construction
In this paper, we use single features as weak rankers Ht,

as in AdaRank [30]. Table 2 provides a summary of the fea-
tures, which are similar to those in previous work (e.g., [18]).
We use two families of scoring functions, based on the Dirich-
let score from language modeling and BM25. Each family
consists of a unigram feature, a bigram proximity feature
that takes term order into account (parameterized with a
window S ∈ {1, 2, 4}), and a bigram feature score for un-
ordered terms (parameterized with a window S′ ∈ {2, 4, 8}).

Typically, bigram features are computed over the entire
query, which is problematic, as pointed out in Wang et
al. [28]. Consider the query “white house rose garden”: in-
tuitively, the bigram “white house” is more important than
“house rose”. Computing features for all bigrams would be
wasteful, so we need a mechanism to capture the importance
of different query bigrams. It is accomplished by parameter-
izing bigram features with an “importance bin”. Each query
bigram occupies a bin, sorted by concept importance as
measured by the weighted sequential dependence model [4].
Therefore, selecting the first bin amounts to selecting the
most important query bigram. The cross of the feature and
the bin is available to the learner to independently select
from, thus allowing the cascade to selectively add query bi-
grams. Note that unigram features are not binned.

We note that our cascade model and learning algorithm
can work with other ranking features beyond those defined
here. Our approach can easily handle hundred or even thou-
sands of features, the scale at which commercial search en-
gines operate. The contribution of this work is not feature
engineering, but rather the novel cascade ranking model and
learning algorithm.

Let St denote the pair < Jt(βt), Ht >, where Jt is a prun-
ing function as defined in Section 3.1 and Ht is a weak ranker
drawn from one of the features described above. At each
boosting iteration, we select a stage St according to the fol-
lowing formula:

St = arg max
St

ϕ2
t −

"X
qi

Pt(qi)

1− γ · C(St, qi)

#2

where ϕt =
X
qi

Pt(qi)

1− γ · C(St, qi)
E(St, qi) (6)

where E(St, qi) and C(St, qi) are effectiveness and cost, re-
spectively, from computing Ht over the reduced set of docu-
ments (after pruning).1 The goal of this optimization is to
find the optimal combination of Jt(βt) and Ht that best bal-
ances cost and effectiveness over the weighted training data.
Several methods can be used for this optimization, and in

1Note that for the purposes of the above arg max computa-
tion, αt is irrelevant.
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fU,BM25,S′ (qj , qj+1, D) =
(k1 + 1) · tf(uw(S′, qj , qj+1), D)

K + tf(uw(S′, qj , qj+1), D)
log

»
N − df(uw(S′, qj , qj+1)) + 0.5

df(uw(S′, qj , qj+1)) + 0.5

–

Figure 2: Definition of features used in our cascade model. tf(e,D) is the count of concept e in D, df(e) is the
document frequency of concept e, cf(e) is the collection frequency of concept e, where e is defined as follows:
q is a query term; OD(S, qj , qj+1) is an ordered phrase, span of S (S ∈ {1, 2, 4}); UW(S′, qj , qj+1) is an unordered
phrase, span of S′ (S′ ∈ {2, 4, 8}). N is the number of documents in the collection; |D| is the length of document
D; |D|′ is the average document length in the collection; |C| is the total length of the collection; for Dirichlet
features, µ is a smoothing parameter; for BM25, K = k1[(1− b)− b · (|D|/|D|′)], and k1, b are free parameters.

this work, we employ grid search [19] to find the set of Ht,
Jt and βt that maximizes the equation.

A formal analysis of the boosting algorithm is presented
in Section 4.5 and the proof is provided in the Appendix.
For now, we note that when the tradeoff parameter γ = 0
(i.e., efficiency is ignored), the model simplifies to AdaRank.
However, our algorithm can produce both effective and effi-
cient ranking models and can be viewed as a generalization
of AdaRank’s effectiveness-only approach.

4.5 Analysis
In this section, we show how our boosting algorithm can

continuously improve the tradeoff metric over the training
data. We want to maximize the tradeoff metric T over the
training queries:

max
S

X
qi

T(S, qi) (7)

which is equivalent to:

min
S

X
qi

(1−T(S, qi)) (8)

Because 1 − x ≤ e−x for any real value x, we minimize an
exponential upper-bound of above expression:

min
S

X
qi

exp(−T(S, qi)) (9)

In our case, a linear combination of weak rankers is used to
score the documents, with pruning performed at each stage.
The optimization in Equation 9 is the same as:

min
St

X
qi

exp(−T(St−1 ∪ St, qi)) (10)

where St−1 denotes the cascade up to stage t − 1. For de-
termining a single stage St, our boosting algorithm takes
the approach of “forward stage-wise selection” [13], i.e., suc-
cessively adding each cascade stage to improve the overall
tradeoff metric. It can be proved that there exists a lower

bound on the tradeoff metric over the training data:

T ≥ 1−
TY
t=1

e−δ
t
min

vuut"X
qi

Pt(qi)

1− γ · C(St, qi)

#2

− ϕ2
t (11)

where ϕt is given in Equation 6, and let

δti = E(ft−1 + αtHt, qi)− E(ft−1)− αE(Ht, qi)

where ft−1 denotes the linear combination of weak rankers
up to t − 1 (applied to the non-pruned documents only)
and δtmin = mini=1,...,N δti , where N denotes the number of
queries. This means that the tradeoff metric can be contin-
uously improved as long as the following holds:

e−δ
t
min

vuut"X
qi

Pt(qi)

1− γ · C(St, qi)

#2

− ϕ2
t < 1 (12)

That is, this condition is satisfied as long as the gain in
effectiveness from additional stages is not outweighed by its
cost. A detailed proof can be found in the Appendix.

5. EXPERIMENTS
This section presents experimental results: we first de-

scribe the experimental setup and implementation details,
and then present an evaluation using TREC data.

5.1 Experiment Setup
Our cascade model was evaluated on three TREC web test

collections: Wt10g, Gov2, and Clue (first English segment
of ClueWeb09). Details for these collections are provided in
Table 1. The topic titles were used as queries, split equally
into a training and a test set. Model parameters were tuned
on the training set; reported results are from the test set.

We compare our cascade model against a set of strong
baselines in terms of top k ranked effectiveness and retrieval
efficiency. Effectiveness is measured in terms of NDCG20
and precision at 20 (P20), while retrieval efficiency is mea-
sured in terms of average query execution time. Our cas-
cade model is compared against three others: AdaRank [30],
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Name Number of Docs TREC Topics

Wt10g 1,692,096 451-550
Gov2 25,205,179 701-850
Clue 50,220,423 1-50

Table 1: Summary of TREC collections and topics
used in our experiments.

which can be seen as a special case of the cascade model
(i.e., optimized for effectiveness only with no efficiency con-
siderations); a previously best-known model that jointly op-
timizes for both ranked effectiveness and efficiency by reduc-
ing the number of features computed at query time (which
we call “FeaturePrune”) [27]; and the basic query-likelihood
model (QL). For fairness of comparison, “FeaturePrune” re-
implements the approach and training method (greedy line
search) described by Wang et al. [27], using the exact same
feature set and objective function as our cascade model.
As previously noted, since Cambazoglu et al. [8] focuses on
early-exit strategies given a particular additive ensemble, it
is difficult to meaningfully compare with our approach.

For training, we used NDCG20 as the effectiveness mea-
sure (E) in our tradeoff metric T, with γ set to 0.1. Both
the cascade structure and the cascade parameters are auto-
matically learned by directly optimizing the tradeoff metric
over the training set. All results are reported over the test
set. The Wilcoxon signed rank test with p < 0.05 was used
to test for statistical significance.

Experiments were performed on a server running Red Hat
Linux, with dual Intel Xeon quad-core processors (E5620
2.4GHz), 64GB RAM, and six 2TB 7.2K RPM SATA drives
in RAID-6 configuration.

5.2 Implementation Details
All models were implemented in the Ivory open-source

retrieval toolkit [15]. Baseline QL, AdaRank, and Feature-
Prune work exactly as one might expect: by traversing post-
ings in an inverted index and performing document-at-a-
time scoring with max-score optimization [25]. The first
stage of our cascade H0 also works in the same way, using
the weak learner that was selected by our boosting algo-
rithm (retaining the top 20,000 hits). However, the remain-
ing stages in the cascade adopt a different architecture. For
stage H1 and subsequent stages, we construct a forward in-
dex, which is essentially a list of pairs consisting of a doc-
ument and a query term, grouped by the document. This
structure can be efficiently built on the fly as we traverse
postings in the initial cascade stage, by retaining the top
documents as determined by the pruning function used in
the first cascade stage. The forward index is small enough to
be stored in memory and query evaluation for the subsequent
stages is performed by iterating over the forward index. The
reported retrieval efficiency of our cascade model accounts
for the overall time taken by the cascade to return results,
including the first stage. Other than this architectural dif-
ference, all models share exactly the same code, which makes
for a fair comparison. Note that in all cases we used a single
monolithic inverted index (i.e., no document partitioning).
Based on the method described in Section 4.1, we computed
UT to be 1 for unigram and 20 for bigram features. This
empirically matches actual retrieval times well.

One final implementation detail: to speed up pruning,
our cascade allows pruning Jt to be performed “on-the-fly”

within the computation of Ht, and so it incurs no additional
cost. To see this, we observe that all three pruning meth-
ods prune input documents based on their rank order, i.e., a
document with low score will be pruned before a document
with high score. Thus, we simply iterate over the input doc-
uments in rank order, checking if each document di passes Jt,
and if so, Ht is evaluated; else, the pruning/scoring process
at stage t terminates (because if di does not pass pruning,
any document ranked below it will not either). Note that
descriptive statistics such as minimum, maximum, mean,
etc. can be computed at the previous stage and passed to
the pruning function. Coupling pruning Jt with Ht makes
pruning extremely efficient.

5.3 Effectiveness vs. Efficiency
Table 2 reports NDCG20, P20, and average query eval-

uation time for our cascade model, QL, AdaRank, and the
FeaturePrune method. For all three datasets, percentage im-
provements for both NDCG20 and P20 are shown in paren-
theses: over QL for AdaRank, and over QL/AdaRank for
FeaturePrune and the cascade model. Statistical signifi-
cance is denoted by special symbols in the table.

In all datasets, the cascade model achieves similar (and
many times slightly better) effectiveness compared to Ada-
Rank in both NDCG20 and P20, while being much faster.
For instance, the cascade is 32.7%, 48.7%, and 34.7% faster
than AdaRank on Wt10g, Gov2, and Clue, respectively.
This means that our cascade model can equal or beat an
effectiveness-only boosting model, while also being much
faster. This illustrates that using a monolithic ranking func-
tion, as has been common practice for ad hoc retrieval, trades
a great deal of efficiency for effectiveness. Such costly mono-
lithic models are not more effective either since most of the
documents they score are not relevant anyway. This also
highlights the advantage of the cascade: by progressively re-
ducing the size of candidate documents, it allows for the
use of more complex ranking functions for high effectiveness
without sacrificing efficiency.

Furthermore, we observe that the efficiency improvement
of the cascade over AdaRank is greater for the two larger
datasets (Gov2 and Clue) than Wt10g. This makes sense:
compared to smaller document collections, larger collections
contain more non-relevant documents. Thus, by filtering out
these documents early in the ranking process, the cascade
drastically improves efficiency and avoids evaluating docu-
ments that have little chance of appearing in the top k.

The cascade model also outperforms the feature prun-
ing method in all evaluation measures across all datasets.
In terms of retrieval time, the cascade is 12.9%, 44.5%,
and 24.9% faster than the feature prune method on Wt10g,
Gov2, and Clue, respectively. In terms of ranked effective-
ness, the feature pruning method is slightly worse than Ada-
Rank, likely due to removing ranking features for efficiency
considerations. The FeaturePrune method behaves exactly
as described in Wang et al. [27], discovering a better trade-
off point by giving up a bit of effectiveness for a gain in
efficiency. However, the cascade model is able to obtain the
best of both worlds: it can achieve better top k effectiveness
and return results in a shorter amount of time.

Finally, compared to QL, which only uses simple term-
based features for ranking and hence is very efficient, we
observe that the cascade model is only slightly slower, but
achieves much better top k effectiveness. Our cascade model
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Wt10g Gov2 Clue
Time NDCG20 P20 Time NDCG20 P20 Time NDCG20 P20

QL 0.080 34.07 32.40 1.15 44.57 50.93 2.60 27.50 34.20

AdaRank 0.260 35.49 33.50 3.90 47.37* 53.60 6.55 30.94* 37.40
(+4.2) (+3.4) (+6.3) (+5.2) (+12.5) (+9.4)

FeaturePrune 0.201 34.86 33.10 3.61 47.16 51.87 5.70 29.66 36.20
(+2.3/-1.8) (+2.2/-1.2) (+5.8/-0.7) (+1.8/-2.1) (+7.9/-4.1) (+5.8/-3.2)

Cascade 0.175 35.60 33.80 2.00 47.44* 54.47* 4.28 30.60* 37.40
(+4.5/+0.3) (+4.3/+0.9) (+6.4/0.1) (+7.0/1.6) (+11.3/-1.1) (+9.4/–)

Table 2: Comparison of retrieval time and effectiveness between query likelihood (QL), AdaRank, a feature-
pruning method (FeaturePrune) and our cascade model. Effectiveness/efficiency tradeoff parameter γ is set
to 0.1. Symbol * denotes sig. difference over QL. % improvement shown in parentheses: over QL for AdaRank,
and over QL/AdaRank for FeaturePrune and Cascade. Time is measured in seconds.

Wt10g Gov2 Clue
NDCG20 Filtered Filter loss NDCG20 Filtered Filter loss NDCG20 Filtered Filter loss

Stage 0 34.07 — — 44.57 — — 27.60 — —
Stage 1 34.91 91.2%S 0.09% 46.34 95.1%M 0.15% 30.05 97.7%S 0.09%
Stage 2 35.23 0.0% 0.0% 46.53 50.0%R 1.6% 30.53 68.3%R 0.18%
Stage 3 35.60 20.2%R 0.04% 47.44 0.0% 0.0% 30.60 10.7%R 0.0%

Table 3: For each stage of the cascade models in Table 2, we compute NDCG20, % documents filtered from
the previous stage, and filter loss (% documents incorrectly pruned out of all documents passed from the
previous stage). Values in the “Filtered” column are annotated with the pruning function that was learned:
R for rank-based pruning, S for score-based pruning, and M for the mean-max threshold.

outperforms QL by 4.5%, 6.4% and 11.3% in NDCG20 on
Wt10g, Gov2, and Clue, respectively, with the improve-
ments on Gov2 and Clue statistically significant. Similar
gains are also observed for P20.

5.4 Cascade Analysis
For the cascades learned in the previous section, we exam-

ine their behavior on a stage-by-stage basis in terms of effec-
tiveness and efficiency. A detailed analysis is shown in Ta-
ble 3: for each cascade stage, we present NDCG20 achieved
up to that stage and the percentage of documents filtered
from the previous stage. The values are annotated with
the pruning function J learned by our boosting algorithm
at each stage. We also compute filter loss, defined as the
percentage of documents incorrectly filtered (i.e., relevant
documents which are pruned) out of all documents passed
from the previous stage. For all three collections, a tradeoff
parameter of γ = 0.1 yields four stages. This is because the
cost from adding additional stages outweighs the marginal
gain in effectiveness, even with document pruning.

We see from Table 3 that in most cases, each cascade stage
processes a substantially smaller set of documents than the
previous stage, but always improves ranked effectiveness. As
an example, by Stage 1, the cascade reduces the document
set size by more than 90% in all three test collections, how-
ever, NDCG20 continues to improve in subsequent stages,
due to using high quality/expensive ranking features over
the small number of retained documents. For instance, our
boosting algorithm learns to use simple term-based features
in the initial stage for all three datasets, and uses term-
proximity features (which are more costly) in subsequent
stages to further improve the model’s retrieval effectiveness.
It is also interesting to see in all three datasets, the first stage
prunes much more aggressively than subsequent stages. Be-
cause the input document set size is the largest at the first

stage, the efficiency of the cascade can be significantly im-
proved by eliminating a large number of documents early.

Also interesting is that in comparison to the NDCG20
achieved by FeaturePrune in Table 2 (which optimizes the
same tradeoff), the cascade quickly achieves comparable ef-
fectiveness, and then surpasses it in subsequent stages. For
instance, in comparison to Table 2, by stage 1, the cas-
cade begins to surpass the final NDCG20 score achieved by
FeaturePrune (Wt10g and Clue). By the final stage, the
cascade NDCG20 scores surpass that achieved by AdaRank
(Wt10g and Gov2). This illustrates that document pruning
performed by the cascade improves efficiency while having
minimal impact on effectiveness, compared to the monolithic
ranking models. This is confirmed by the very low filter loss
reported in the table (nearly zero for all stages).

We also observe that at stage 2 for Wt10g and stage 3
for Gov2, the cascade does not prune any input documents.
This behavior can be explained by the tradeoff metric—the
effectiveness gain from applying the ranking feature on all
input documents outweighs its cost, and therefore the op-
timal pruning parameters at these stages are zero (i.e., no
pruning). However, interestingly, the learned cascade for
Clue, the largest collection, always prunes at all stages, and
much more aggressively (e.g., at 97.7%, 68.3% and 10.7%)
than the same stages for the two smaller collections. This
is because web-scale collections contain a greater proportion
of non-relevant documents; to combat this, the model learns
that more aggressive pruning is necessary.

Finally, further analysis reveals that relevant documents
that are filtered by our cascade are not ranked in the top k
documents by AdaRank either, i.e., these documents have no
chance of entering the top k even if an effectiveness-centric
model is used. The cascade model is able to obtain the best
of both worlds: it can achieve better top k effectiveness and
return results in a shorter amount of time, compared to both
AdaRank and the feature-pruning approach.
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Figure 3: NDCG20 as a function of time, generated by varying γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

5.5 Parameter Variations
Our final set of experiments explores the effects of vary-

ing γ, the tradeoff parameter that balances effectiveness E
and cost C in our objective function T. The setting of γ af-
fects the cascade model and the feature pruning method, but
not AdaRank (since it does not take into account efficiency)
or the QL baseline (since no training is involved). Fig-
ure 3 shows NDCG20 of our cascade model and the feature-
pruning method as function of average query evaluation time
for each of the three collections, where each point represents
a setting of γ, selected from the set {0.1, 0.3, 0.5, 0.7, 0.9}.
Different values of γ produce different effectiveness/efficiency
tradeoffs: a high value penalizes costly ranking functions,
thus yielding faster models, whereas a smaller value yields
more effective models. In each graph, the effectiveness lower
bound, defined as the minimum effectiveness achieved under
any condition, is plotted as the lower solid line, and the effec-
tiveness upper bound, defined as the maximum effectiveness
achieved, is plotted as the upper dotted line.

While in general effectiveness improves for both the cas-
cade and the feature-pruning method when given more time
for ranking, the cascade model consistently achieves equal or
better NDCG20 across all conditions. It also approaches the
upper bound more rapidly as time increases. Although both
the cascade model and the feature-pruning method are able
to realize different effectiveness/efficiency tradeoffs, these re-
sults show that the cascade model is superior in being able
to return higher quality results much faster.

We also note that for Gov2 and Clue, the cascade tradeoff
curve rises more steeply than for Wt10g. This bolsters our
argument that the cascade model works particularly well
for large collections. From the point of view of top k ranked
effectiveness and efficiency, applying ranking features on a
small number of documents is considerably more efficient
but can also be more effective (by eliminating many non-
relevant documents from consideration).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a cascade ranking model for

efficient top k retrieval, where a sequence of increasingly
complex ranking functions is used to progressively refine a
shrinking set of candidate documents. We propose a novel
boosting-based algorithm that jointly learns the model struc-
ture (i.e., the optimal sequence of ranking stages) and the
pruning criteria at each stage. Experiments show that our
cascade model is able to simultaneously achieve high effec-
tiveness and fast retrieval.

There are several future directions. We have only begun

to explore the design space of machine learning algorithms
for multi-objective optimization in the context of learning to
rank: possibilities include other types of objectives (beyond
linear combinations), other pruning functions (that take into
account more than document score and rank), and different
types of weak rankers (for example, decision trees). More
work along these lines can further contribute to this emerg-
ing thread of learning to efficiently rank.
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Appendix
Here we prove Equation 11. For notational clarity, let E(fT , qi)
and E(HT , qi) denote the effectiveness of cascade ST and a stage
ST , respectively.

Proof. Let: ZT =
P
qi
exp(−E(fT , qi))exp(γC(ST , qi)), φT =P

qi

PT (qi)
1−γC(ST ,qi)

+ϕT

2
. Using definitions of PT (qi), ϕT , and αT

in Section 4, we get eαT =
q

2φT
2(φT−ϕT )

=
q

φT
(φT−ϕT )

.

ZT =
X
qi

exp(−(E(fT , qi)− γC(ST , qi)))

=
X
qi

exp{−E(fT−1, qi)− αTE(HT , qi)− δTi

+γC(ST−1, qi) + γC(ST , qi)}

≤ e−δ
T
min

X
qi

exp(−E(fT−1, qi))exp(−αTE(HT , qi))

· exp(γC(ST−1, qi))exp(γC(ST , qi))

= e−δ
T
minZT−1

X
qi

PT (qi)exp(−αTE(HT , qi))

· exp(γC(ST , qi))

Since ex ≤ 1
1−x for any real x we have:

ZT ≤ e−δ
T
minZT−1

X
qi

PT (qi)

1− γC(ST , qi)
exp(−αTE(HT , qi))

Since E(HT , qi) ∈ [−1, 1] we have:

ZT ≤ e−δ
T
minZT−1

X
qi

PT (qi)

1− γC(ST , qi)
{

1 + E(HT , qi)

2
e−αT

+
1− E(HT , qi)

2
eαT }

= e−δ
T
minZT−1

`
φT e

−αT + (φT − ϕT )eαT
´

= Z1

TY
t=2

e−δ
t
min

p
4φt(φt − ϕt)

= N
X
qi

1

N
exp(−E(f1, qi))exp(γC(S1, qi))

·
TY
t=2

e−δ
t
min

p
4φt(φt − ϕt)

≤ N e−δ
1
min

X
qi

exp(−E(f1, qi))exp(γC(S1, qi))

·
TY
t=2

e−δ
t
min

p
4φt(φt − ϕt)

≤ N e−δ
1
min

p
4φ1(φ1 − ϕ1)

TY
t=2

e−δ
t
min

p
4φt(φt − ϕt)

= N

TY
t=1

e−δ
t
min

p
4φt(φt − ϕt)

Substitute in φt and ϕt:

≤ N

TY
t=1

e−δ
t
min

vuut"X
i

Pt(qi)

1− γC(St, qi)

#2

− ϕ2
t

So we have:

T =
1

N

X
qi

E(fT , qi)− γC(ST , qi)

≥
1

N

X
qi

1− exp(1− (E(fT , qi)− γC(ST , qi)))

≥ 1−
TY
t=1

e−δ
t
min

vuut"X
i

Pt(qi)

1− γC(St, qi)

#2

− ϕ2
t

A special case is when γ = 0 (effectiveness-only), this bound is
exactly the same as AdaRank’s. However, non-zero γ values will
induce cascades of various tradeoff behaviors.
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