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ABSTRACT
This paper describes Ivory, an attempt to build a distributed
retrieval system around the open-source Hadoop implemen-
tation of MapReduce. We focus on three noteworthy aspects
of our work: a retrieval architecture built directly on the
Hadoop Distributed File System (HDFS), a scalable Map-
Reduce algorithm for inverted indexing, and webpage clas-
sification to enhance retrieval effectiveness.

1. INTRODUCTION
It is commonly acknowledged that web-scale collections

have outgrown the capabilities of individual machines, ne-
cessitating the use of clusters to tackle basic problems in
information retrieval. Although search engine and other in-
ternet companies have long recognized and adapted to this
fact, the academic community is just beginning to transition
from single-machine to cluster-based systems. One previ-
ous impediment to progress was the availability of data: the
largest collections available to researchers could be comfort-
ably indexed on a typical server-class machine, obviating the
need for clusters. The release of the 25 terabyte, one billion
page ClueWeb09 collection, however, has forced researchers
to think more seriously about cluster-based distributed re-
trieval solutions. This is a good sign, as it will propel the
field forward.

Distributed computations are inherently difficult to orga-
nize, manage, and reason about. With traditional program-
ming models such as MPI, the developer must explicitly han-
dle a range of system-level details, ranging from synchroniza-
tion to data distribution to fault tolerance. Recently, Map-
Reduce [5] has emerged as an attractive alternative: its func-
tional abstraction provides an easy-to-understand model for
designing scalable and distributed algorithms.

MapReduce builds on the observation that many informa-
tion processing tasks have the same basic structure: a com-
putation is applied over a large number of records (e.g., web
pages) to generate partial results, which are then aggregated
in some fashion. Taking inspiration from higher-order func-
tions in functional programming, MapReduce provides an
abstraction for programmer-defined “mappers” (that specify
the per-record computation) and“reducers” (that specify re-
sult aggregation). Key-value pairs form the processing prim-
itives. The mapper is applied to every input key-value pair
to generate an arbitrary number of intermediate key-value
pairs. The reducer is applied to all values associated with
the same intermediate key to generate an arbitrary number
of final key-value pairs as output.

Under this framework, a programmer needs only to pro-

vide implementations of the mapper and reducer. On top of
a distributed file system [6], the execution framework trans-
parently handles all other aspects of execution on clusters
ranging from a few to a few thousand cores. It is responsible,
among other things, for scheduling (moving code to data),
handling faults, and the large distributed sorting and shuf-
fling problem between the map and reduce phases whereby
intermediate key-value pairs must be grouped by key.

Hadoop,1 the open-source implementation of MapReduce,
has gained immense popularity as an accessible, cost-effective
framework for processing large datasets.2 This paper de-
scribes an attempt to build a distributed retrieval system
around the Hadoop ecosystem. Retrieval systems designed
to run on single machines make certain assumptions about
characteristics of system resources (latency, bandwidth, ca-
pacity) and relationships between them. We used this op-
portunity to rethink some of these assumptions in a dis-
tributed environment, as the first step in building a scalable
information retrieval toolkit for the future.

The system we have developed is called Ivory, which in-
tegrates Metzler’s SMRF (Search using Markov Random
Fields) retrieval engine [14, 13].3 Ivory has been released
under an open source license and can be freely downloaded
from the web. This paper discusses three noteworthy as-
pects of our work: a retrieval architecture built directly on
HDFS (Section 2), a scalable MapReduce algorithm for in-
verted indexing (Section 3), and post-processing of results
to suppress adult content, spam, and low quality pages (Sec-
tion 4). Experimental results are discussed in Section 5.

2. RETRIEVAL ARCHITECTURE
Given a user query, retrieval involves fetching postings

lists corresponding to query terms and computing query-
document scores according to the specified retrieval model.
The postings list for each query term must be traversed, in
a manner determined by the organization of the index and
the query evaluation strategy.

1http://hadoop.apache.org/
2To be precise, MapReduce is used to refer to the program-
ming model in general, while Hadoop refers to the specific
open-source implementation. Along the same lines, the dis-
tributed file system (DFS) is used to refer to the underlying
storage substrate in general, while GFS [6] and HDFS are
used to refer to specific implementations.
3In the Maryland tradition of whimsical titles for TREC
papers: The mascot for Hadoop is an elephant, and African
elephants belong to the genus Loxodonta. And yes, it is
clear that Hadoop is an African elephant and not of the
Asian variety.
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Figure 1: Illustration of a simple broker-mediated,
document-partitioned retrieval architecture.

Beyond collections of a certain size, it is not practical
to store the entire index on a single machine. The stan-
dard distributed solution is a broker-mediated, document-
partitioned retrieval architecture, illustrated in Figure 1.
The entire document collection is divided into a number
of partitions (sometimes called “shards”), and indexes are
built for each partition separately; a server is responsible
for searching each index, independent of the others. The in-
teractions between a search client and the partition servers
are mediated by the broker. In the standard query-response
cycle, the client issues a query to the broker, which then dis-
tributes the query to all partition servers in parallel. Each
server computes a ranked list on its assigned document par-
tition independently, and the results are passed back to the
broker. The broker merges the results and returns the fi-
nal ranked list to the client. Although this “vertical” docu-
ment partitioning strategy is often used in conjunction with
a“horizontal” tiered partitioning strategy (i.e., by document
quality), we do not consider that additional complexity in
this work.

2.1 The Distributed Environment
In the early stages of our project, we noticed a fundamen-

tal mismatch between the standard document-partitioned
retrieval architecture and characteristics of the MapReduce
environment.

First, consider the problem of query evaluation on each
individual partition. MapReduce, which was designed for
batch processing, is not appropriate for this task. In Hadoop,
it can take tens of seconds for mappers to even launch, since
tasks must be queued at the jobtracker before they can be
assigned to individual workers. Furthermore, the current
design of Hadoop limits the rate at which new map tasks
can be spawned. For the sub-second query latency expected
by searchers today, there is no obvious way to implement
workable retrieval algorithms in MapReduce.

Moreover, the MapReduce software ecosystem presents
additional challenges for real-time retrieval algorithms. An
integral component of MapReduce is the underlying dis-
tributed file system (DFS), which was designed around a
number of assumptions about the workload. Since it is as-
sumed that MapReduce jobs perform batch-oriented pro-
cessing of large datasets, the distributed file system was op-
timized for high sustained throughput and not low-latency
random access.

The DFS employs a simple master-slave architecture and
stores files in fixed-size blocks. The master (called the na-
menode in HDFS) stores metadata and namespace mappings
to data blocks, which are themselves stored on the local disks
of the slaves (called datanodes in HDFS). The master only
communicates metadata; data transfer occurs directly be-

tween the application client and the relevant datanode. To
the extent possible, the MapReduce scheduler starts map
tasks on the machines that hold the data block to be pro-
cessed, thus guaranteeing high sustained throughput since
the task reads from local disk.

This design makes it difficult to achieve low-latency ran-
dom access to DFS data from an arbitrary application client
(e.g., a partition server). To access a random position in a
file (e.g., looking up a postings list), the client must first
contact the namenode to locate the relevant data block.
Then, the client must contact the appropriate datanode to
obtain the requested data. In addition to a disk seek on
the datanode, the entire process involves round-trip com-
munications with multiple machines and data transfer over
the network. This problem cannot be solved by simply run-
ning the application client on the datanode that has the
block stored locally. The distributed file system, by design,
spreads data blocks across nodes in the cluster (to ensure
reliability, to provide better locality, etc.), and therefore, for
even moderately-large files, no single datanode will hold the
entirety of a file’s contents.

The design of the distributed file system is directly at
odds with the requirements for query evaluation, since low-
latency random access to postings is necessary. Even though
MapReduce provides a nice framework for building inverted
indexes, the above discussion suggests that the DFS makes
a poor storage substrate for retrieval. This is indeed the
conventional wisdom.

The typical solution to this problem is to employ a sep-
arate architecture for retrieval. Once indexes have been
built using Hadoop and written out to HDFS, they are then
copied over to another cluster (onto standard POSIX file
systems) to support retrieval. Typically, this involves copy-
ing individual partition indexes onto the local disk of the
corresponding partition server. An example is Katta, which
is a system for managing distributed Lucene indexes.4 This
solution, while certainly workable, suffers from two major
drawbacks, discussed below.

First, this solution requires the maintenance of two sepa-
rate architectures: one for batch processing and another for
real-time querying. This also requires splitting hardware re-
sources, making it difficult to bring all available capacity to
bear on a large problem. Although it is possible for the same
physical machines to serve “double duty”, such a setup may
have unpredictable performance effects as multiple processes
are competing for the same cores, memory, disk, and net-
work. Furthermore, maintaining independent architectures
will inevitably require keeping multiple copies of the data.
For example, the collection needs to reside in HDFS to sup-
port indexing, but a separate copy may be needed on the
retrieval cluster so that users can examine results.

Second, the two-architectures solution results in a complex
workflow that necessitates copying large indexes over the
network, thus complicating data management. Such a setup
requires a good mechanism for versioning and metadata con-
trol, because duplicate data may be residing on independent
systems at any given time. Workflow management is noto-
riously difficult in a rapidly-evolving research environment.
Furthermore, the non-trivial latencies involved in copying
indexes over the network to local disks is not conducive to
the rapid turnaround times needed for IR experiments.

4http://katta.sourceforge.net/
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Figure 2: Illustration of Ivory’s distributed archi-
tecture that involves reading postings directly from
HDFS (data transfer shown as solid lines; metadata
communication shown as dotted lines).

2.2 Challenging Conventional Wisdom
In developing the Ivory system, we decided to challenge

conventional wisdom and explore whether it was indeed fea-
sible to“run”query evaluation algorithms directly on HDFS-
stored indexes. In addition, we wondered whether it was
possible to use the same Hadoop cluster for both batch-
oriented processing (e.g., indexing) and for real-time services
(e.g., retrieval).

Despite the discussion above, there were two additional
observations that led us to believe that such an architecture
was at least worth trying. The first bit of evidence comes
from BigTable [4], which is a sparse, distributed, persistent
multidimensional sorted map built on top of the Google File
System. BigTable is used for a number of production ser-
vices with low latency requirements (e.g., Google Earth).
Although very different from the distributed retrieval archi-
tecture we explore here, BigTable demonstrates that there is
no principled reason why DFS latencies cannot be hidden by
higher-level applications. The second bit of evidence comes
from physical cluster architecture—as it turns out, band-
width between a machine and the disks of any other rack-
local machine is surprisingly competitive to the bandwidth
of local disks (since for the most part, rack-level switches
are not oversubscribed internally). A recent monograph by
Barroso and Hölzle [2] discusses these observations in more
detail. Operationally, this means that reading data off the
disk of another machine on the same rack isn’t much slower
than reading data off the local disk.

The retrieval component in Ivory comes from Metzler’s
SMRF (Search using Markov Random Fields) engine, which
was used in a number of previous studies examining the
effectiveness of Markov Random Fields for information re-
trieval, but has not been available as open-source software
until now. The major modification to the previous imple-
mentation was to fetch postings directly from HDFS instead
of local disk. This is shown in Figure 2, which focuses on an
individual partition server. As is standard in most retrieval
engines, the vocabulary is held in memory. With front-
coding, this is relatively easy to accomplish, even for large
collections. The vocabulary holds byte offsets into HDFS-
stored index files that correspond to locations of postings
lists. The fetching of a postings list involves first contacting
the namenode for the block location, and then contacting
the datanode itself for the actual data—which is no differ-
ent from any other HDFS read.

Within a Hadoop cluster environment, we still need to

address the issue of how partition servers and the broker are
initialized—given that the only point of contact between a
client and the Hadoop cluster is the jobtracker. The solution
we devised involves embedding servers in MapReduce jobs
(albeit degenerate ones in most cases).

Partition servers can be spawned as a MapReduce job
that runs mappers but no reducers. Embedded inside each
mapper is a server that handles queries over a TCP connec-
tion and accesses postings directly on HDFS (as described
above). To start multiple partition servers, we create a Map-
Reduce job that maps over a configuration file specifying the
locations of the partition indexes. By appropriately config-
uring the job, a number of mappers equal to the number of
document partitions is spawned. Each mapper reads in the
location of the partition index, initializes a query engine,
and then launches into an infinite service loop waiting for
incoming TCP connections. The Hadoop execution frame-
work is in essence co-opted into serving as a simple scheduler.
However, we have little control over which cluster nodes the
mappers are launched on. Fortunately, this situation is easy
to rectify: when each mapper launches, it first writes its host
information into a known DFS location. After all the parti-
tion servers have been initialized, the broker can be launched
as a 1-mapper/0-reducer MapReduce job, reading the host
information of all the partition servers and completing the
distributed broker architecture.

Our solution addresses many of the issues with the two-
architectures solution discussed in Section 2.1. Instead of
maintaining a Hadoop cluster for indexing and another clus-
ter for retrieval, we can accomplish both within a homoge-
neous environment. This allows us to better utilize avail-
able hardware resources and simplifies data management
and workflow. The potential downside is, of course, de-
graded query performance due to reading postings remotely.
Section 5.1 reports the performance of this architecture.

3. INVERTED INDEXING
Dean and Ghemawat’s original paper [5] showed that Map-

Reduce was designed from the very beginning with inverted
indexing as an application. Although very little space was
devoted to describing the algorithm, it is relatively straight-
forward to fill in the missing details: this basic MapReduce
algorithm for inverted indexing is shown in Figure 3. In-
put to the mappers consists of document numbers5 (keys)
paired with the document content (values). Inside the map-
per, each document is tokenized, stemmed, and filtered for
stopwords. Terms are processed sequentially to build a his-
togram of term frequencies (implemented as an associative
array). The algorithm then iterates over all terms: for each,
a posting consisting of the document number and the term
frequency is created (denoted by 〈n, H{t}〉 in the pseudo-
code). The mapper then emits an intermediate key-value
pair with the term as the key and the posting as the value.
In this simple case, the payload of each posting contains only
the tf, but this can easily be augmented with term position
information to build positional indexes.

In the sort and shuffle phase, the MapReduce runtime
performs a large, distributed “group by” of the postings by
term. Without any additional effort by the programmer, the
execution framework brings together all postings associated

5We assume that documents are sequentially numbered from
1 to n, where n is the number of documents in the collection.



1: class Mapper
2: method Map(docno n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H{t} ← H{t}+ 1

6: for all term t ∈ H do
7: Emit(term t, posting 〈n, H{t}〉)
1: class Reducer
2: method Reduce(term t, postings [〈n1, f1〉 . . .])
3: P ← new List
4: for all posting 〈n, f〉 ∈ postings [〈n1, f1〉 . . .] do
5: P.Append(〈n, f〉)
6: P.Sort()
7: Emit(term t, postings P )

Figure 3: Pseudo-code of the simple inverted index-
ing algorithm in MapReduce.

with the same term. This tremendously simplifies the task
of the reducer, which gathers the postings and writes them
to disk. The reducer begins by initializing an empty list and
then appends all postings associated with the same term
(key) to the list. The postings are then sorted (depending
on type of index, by document number or term frequency)
and written to disk (appropriately compressed).

The MapReduce programming model provides a very con-
cise expression of the inverted indexing algorithm, and can
be implemented in a couple of dozen lines of code in Hadoop.
Such an implementation can be successfully completed as
a programming assignment in a computer science course
for advanced undergraduates and first-year graduate stu-
dents [7, 9], which illustrates the simplicity of the the al-
gorithm. In a traditional indexer (i.e., not implemented in
MapReduce), significant attention must be devoted to the
task of grouping postings by term, given constraints imposed
by memory and disk (that memory capacity is limited, disk
seeks are slow, sequential operations are preferred, etc.). In
MapReduce, the programmer does not need to worry about
any of these issues—the heavy lifting of grouping postings
is handled by the execution framework.

3.1 Scalable MapReduce Indexing Algorithm
There is, however, a significant bottleneck in the basic

MapReduce algorithm for inverted indexing: it assumes that
there is sufficient memory to hold all postings associated
with the same term. Since the MapReduce execution frame-
work makes no guarantees about the ordering of values as-
sociated with the same key, the reducer must first buffer
all postings and then perform an in-memory sort before the
postings can be written out to disk.

Since Ivory builds document-sorted indexes, we restrict
our attention to the problem of sorting postings by ascend-
ing document number. Since the execution framework guar-
antees that keys arrive at each reducer in sorted order, one
way to overcome the scalability bottleneck is to let the Map-
Reduce runtime do the sorting. Instead of emitting key-
value pairs of the following type:

(term t, posting 〈n, f〉)
We emit intermediate key-value pairs of the type:

(tuple 〈t, n〉, tf f)

1: class Mapper
2: method Map(docno n, doc d)
3: H ← new AssociativeArray
4: for all term t ∈ doc d do
5: H{t} ← H{t}+ 1

6: for all term t ∈ H do
7: Emit(tuple 〈t, n〉, tf H{t})
1: class Reducer
2: method Initialize
3: tprev ← ∅
4: P ← new PostingsList
5: method Reduce(tuple 〈t, n〉, tf [f ])
6: if t �= tprev ∧ tprev �= ∅ then
7: Emit(term t, postings P )
8: P.Reset()

9: P.Add(〈n, f〉)
10: tprev ← t

11: method Close
12: Emit(term t, postings P )

Figure 4: Pseudo-code of a scalable inverted in-
dexing algorithm in MapReduce (slightly simplified
from the actual algorithm in Ivory).

In other words, the key is a tuple containing the term and the
document number, and the value is the term frequency. We
need to redefine the sort order so that keys are sorted first by
term t, and then by docno n. Additionally, we need a cus-
tom partitioner to ensure that all tuples with the same term
are shuffled to the same reducer. With these two changes,
the MapReduce execution framework ensures that the post-
ings arrive in the correct order. This, combined with reduc-
ers preserving state across multiple keys, allows compressed
postings to be written with minimal memory usage.

The revised MapReduce inverted indexing algorithm is
shown in Figure 4. The mapper remains unchanged for the
most part, other than differences in the intermediate key-
value pairs. The reducer contains two additional methods:
Initialize, which is called before keys are processed, and
Close, which is called after the final key is processed. The
Reduce method is called for each key (i.e., 〈t, n〉), and by
design, there will only be one value associated with each key.
For each key-value pair, a posting can be directly added to
the postings list. Since the postings are guaranteed to arrive
in the correct order, they can be incrementally encoded in
compressed form—thus ensuring a small memory footprint.
Finally, when all postings associated with the same term
have been processed (i.e., t �= tprev), the entire postings
list is written out to HDFS. The final postings list must be
written out in the Close method.

In our algorithm, the key space is partitioned by term;
that is, all keys with the same term are sent to the same
reducer. Since in Hadoop each reducer writes its output in
a separate file on HDFS, our final index will be split across
r files, where r is the number of reducers. In another Map-
Reduce pass over these files, we construct a postings forward
index to store the byte offset position of each postings list.
This is used during retrieval to fetch postings that corre-
spond to query terms. There is no need to consolidate the
r files, since the postings forward index can keep track of
which file a term’s postings list is found in.



Three more details complete the description of Ivory’s
MapReduce indexing algorithm: positional information, doc-
ument length data, and parameter setting for Golomb com-
pression. First, positional indexes can be built by simply
replacing the intermediate value f (term frequency) with an
array of term positions; otherwise, no additional modifica-
tions are needed to the algorithm.

Second, since almost all retrieval models take into account
document length, this information needs to be computed.
Although it is straightforward to express this computation
as another MapReduce job, this task can actually be folded
into the inverted indexing process. When processing the
terms in each document, the document length is known, and
can be written out as “side data” directly to HDFS. We take
advantage of the ability for a mapper to hold state across the
processing of multiple documents in the following manner:
an in-memory associative array is created to store document
lengths, which is populated as each document is processed.
When the mapper finishes processing input records, docu-
ment lengths are written out to HDFS (i.e., in the Close
method). Thus, document length data ends up in m differ-
ent files, where m is the number of mappers; these files are
then consolidated into a more compact representation.

Finally, parameters must be appropriately set for com-
pression of the postings lists. The prescribed best practice is
to use Golomb compression on first order document number
differences (i.e., d-gaps) [16, 17]. The difficulty, however, is
that Golomb compression requires two parameters: the size
of the document collection and the number of postings for a
particular postings list (i.e., df). The first is easy to obtain
and can be passed into the reducer as a constant. The df
of a term, however, is not known until all the postings have
been processed—and unfortunately, the parameter must be
known before postings are encoded. A two-pass solution that
involves first buffering the postings (in memory) would suf-
fer from the memory bottleneck we’ve been trying to avoid
in the first place.

To get around this problem, we need to somehow inform
the reducer of a term’s df before any of its postings arrive.
The solution is to have the mapper emit special keys of the
form 〈t, ∗〉 to communicate partial document frequencies.
This is accomplished in a manner similar to the computa-
tion of document lengths. The mapper holds an in-memory
associative array that keeps track of how many documents
a term has been observed in (i.e., the local document fre-
quency of the term for the subset of documents processed
by the mapper). Once the mapper has processed all input
records, special keys of the form 〈t, ∗〉 are emitted with the
partial df as the value.

To ensure that these special keys arrive first, we define
the sort order of the tuple so that the special symbol ∗ pre-
cedes all documents. Thus, for each term, the reducer will
first encounter a series of 〈t, ∗〉 keys, representing partial dfs
originating from each mapper. Summing all these partial
contributions will yield the term’s df, which can then be
used to set the Golomb compression parameter. This allows
the postings to be encoded in one pass.

3.2 Merging Results Across Partitions
The broker in a distributed document-partitioned archi-

tecture is responsible for merging results from each of the
partition servers. We explored two separate algorithms for
accomplishing this.

The first approach, which we call the independent fusion
strategy, is to view results merging as a federated search
problem, treating each partition as an independent collec-
tion. This approach simplifies index construction, but makes
document scores across partitions difficult to compare di-
rectly. To correct for this, raw scores are normalized, per
partition, using the z-score transformation as follows [8]:

S∗ = (S − μo)/σ

where S is the raw score, μo is the sample mean of the raw
scores, σ2 is the sample variance, and S∗ is the normalized
score. The normalized scores are now considered samples of
a standard normal distribution. The broker returns a com-
bined ranked list by sorting all of the returned documents
from all partitions based on their normalized scores.

The other strategy for merging results is called global
statistics, which involves distributing global collection statis-
tics to each of the partition indexes. First, each of the par-
tition indexes are built independently. Then, a MapReduce
job maps over all the partition indexes to compute global
statistics (the global df and cf for each term and the size
of the entire collection). Finally, global statistics are propa-
gated back to each partition index. This is also accomplished
with MapReduce: we map over each postings list, and inside
each mapper the global statistics are loaded into memory. A
new version of the index is written with the updated statis-
tics (no reducers are required). This simple process is re-
peated for each partition. Given that MapReduce can take
advantage of the aggregate disk throughput of multiple ma-
chines, these MapReduce jobs are surprisingly fast.

The advantage of the global statistics approach is that
document scores generated in each partition are exactly the
same as document scores in a single global index that spans
all partitions—at least for the retrieval models used in our
experiments (bm25 and query-likelihood). Thus, no addi-
tional score manipulation is necessary, and the broker sim-
ply resorts results from the partition servers and returns the
final reranked list to the client.

3.3 Alternative Algorithm Designs
Our inverted indexing algorithm in MapReduce represents

a single point in the design space of possible approaches to
the task. We discuss alternatives here, which primarily vary
in the extent to which they take advantage of the large dis-
tributed group and sort operations built into the MapReduce
execution framework.

Given an existing single-machine indexer, one simple way
to take advantage of MapReduce is to leverage reducers to
merge indexes built on local disk. This might proceed as
follows: an existing indexer is embedded inside the mapper,
and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index
on local disk for the documents it encounters (i.e., index
construction may involve multiple flushes to local disk and
on-disk merge sorts outside of MapReduce). Once the local
indexes have been built, compressed postings are emitted as
values, keyed by the term. In the reducer, postings from each
locally-built index are merged and written out as the final
index. We did not pursue this option since it seemed like an
incremental improvement over known indexing algorithms,
and instead opted to develop an indexer from scratch to
more fully explore the MapReduce programming model.

Another relatively straightforward adaptation of a single-



machine indexer is demonstrated by Nutch.6 Its algorithm
processes documents in the map phase, and emits pairs con-
sisting of docids and analyzed document contents. The sort
and shuffle phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual
index independently. In this approach, the number of re-
ducers specifies the number of partitions—which limits the
degree of parallelization that can be achieved.

Next, reconsider our critique of Dean and Ghemawat’s
MapReduce algorithm shown in Figure 3. Although we
pointed out the scalability bottleneck associated with sorting
the postings in the reducer, in actuality, there is no princi-
pled reason why this needs to be an in-memory sort. Instead,
one could implement a multi-pass on-disk merge sort within
the reducer. However, this is exactly what the MapReduce
execution framework does in the sort and shuffle phase, so
it makes sense to offload the processing.

Finally, we note that independently and roughly concur-
rently, McCreadie et al. [12] proposed a MapReduce inverted
indexing algorithm based on emitting partial postings lists.
The reducer receives partial postings lists and merges them
into final postings lists.

Abstractly, inverted indexing can be viewed as a massive
group and sort of individual postings. MapReduce indexing
algorithms vary in what component performs these opera-
tions: the mappers and reducers, the execution framework,
or a combination of both. In the first approach, the devel-
oper must shoulder at least some of the burden of group-
ing and sorting key-value pairs, but can take advantage of
application-specific optimizations (e.g., efficient δ compres-
sion schemes). The downside, however, is added code com-
plexity and potential scalability bottlenecks that may not
be apparent. We have taken the second approach, and com-
pletely offloaded the grouping and sorting operations onto
the MapReduce execution framework. Although this does
not allow us to take advantage of application-specific op-
timizations, it does significantly simplify code. Moreover,
scalability is ensured since we are taking advantage of mech-
anisms built directly into the programming model. Never-
theless, there is likely to be a middle ground (the third op-
tion) that balances simplicity and efficiency—which seems
like a promising direction for future work.

4. ADULT, SPAM, AND QUALITY
Given the large size of the ClueWeb09 collection, we hy-

pothesized that traditional retrieval models would return a
large amount of spam, adult material, and generally low
quality documents that would severely degrade retrieval ef-
fectiveness. However, to properly test our hypothesis, we
would need highly accurate spam, adult, and document qual-
ity classifiers or predictors. Rather than build classifiers
ourselves, we used Yahoo!’s proprietary adult, spam, and
document quality classifiers to post-process the ranked lists
produced using Ivory.

Due to their proprietary nature, we are unable to provide
the exact details of how these classifiers work, other than to
say that they are machine-learned models that make use of
many features and were trained using a very large amount of
manually labeled data. We normalized the output of these
classifiers to provide a score between 0 and 1, with 0 denoting
not spam / not adult / low quality and 1 denoting spam /

6http://lucene.apache.org/nutch/

adult / high quality.7 As a reference, Qi and Davison [15]
provide a recent survey on web page classification.

Given the lack of proper training data on the ClueWeb09
collection, we utilized the output of the classifiers in a sim-
ple, heuristic manner. We assumed that spam and adult
documents would never be judged relevant, so we used the
spam and adult classifiers to filter such documents from the
result set. Furthermore, we used the output of the document
quality classifier to adjust the original document scores as-
signed by Ivory. Results were rescored as follows:

S′(Q, D) =

{
S(Q, D) · fq(D)αq fa(D) < τa ∧ fs(D) < τs

−∞ otherwise

where S′(Q, D) is the new score, S(Q, D) is the original
score, fs(D) is the spam classifier score, fa(D) is the adult
classifier score, fq(D) is the document quality classifier score,
τs is the spam threshold, τa is the adult threshold, and αq is
quality score adjustment factor. The free parameters are τs,
τa, and αq: different settings will lead to different degrees of
filtering and reranking.

We considered two different settings for these parameters.
The first, which we call conservative, corresponds to τa =
0.9, τs = 0.9, αq = 0.1. The second, which we call moderate
and uses τa = 0.75, τs = 0.75, αq = 0.25. These settings
were manually chosen after some preliminary experiments
on a small development set of queries. To ensure that we
return 1000 documents per query, we post-processed the top
2000 ranked documents.

5. RESULTS
Experiments were run on a cluster provided by Google

and managed by IBM, shared among a few universities as
part of NSF’s CLuE (Cluster Exploratory) Program and the
Google/IBM Academic Cloud Computing Initiative. The
cluster used in our experiments contained 99 physical nodes;
each node has two single-core processors (2.8 GHz), 4 GB
memory, and two 400 GB hard drives. The entire software
stack (down to the operating system) was virtualized; each
physical node runs one virtual machine hosting Linux. Ex-
periments used Java 1.6 and Hadoop version 0.20.1.

Since more detailed specifications of the cluster machines
were not available, we decided to informally run our own per-
formance benchmarks. An individual cluster node achieved
a composite score of 442 on NIST’s SciMark 2.0 bench-
mark,8 averaged over 3 trials. For comparison, a laptop
with a 2.6 GHz Core 2 Duo (T7800) processor9 and 2 GB of
RAM scored 494 on the same test (once again, averaged over
three trials). SciMark consists of five computational ker-
nels: FFT, Gauss-Seidel relaxation, Sparse matrix-multiply,
Monte Carlo integration, and dense LU factorization. Note
that this benchmark is primarily used to measure the per-
formance of scientific and engineering applications, so the
focus is on processor speed (which is only one component
of overall performance). However, Lin [10] reported that
on a brute-force task involving repeated computation of dot
products, each cluster node was significantly slower than
the same laptop. While it is true that our applications are

7Note that the scales are reversed for quality, compared to
spam/adult.
8http://math.nist.gov/scimark2/
92007 technology



Queries Model HDFS local

Robust04 bm25 5.45s 8.25s
Robust04 QL 6.65s 10.0s
Web09 bm25 4.73s 6.65s
Web09 QL 5.60s 7.42s

Table 1: Average per-query running time on the first
segment of ClueWeb09, comparing indexes stored on
HDFS with indexes stored on local disk.

primarily IO-bound and not processor-bound, we suspect
that the cluster consists of previous-generation machines.
Performance figures presented below should be interpreted
with this important caveat. The 99-node cluster contained
198 cores, which, with current dual-processor quad-core con-
figurations, could fit into 25 machines—a far more modest
cluster with today’s technology, not to mention that modern
processors would be substantially faster.

5.1 Efficiency
On the 99-node cluster, indexing time for the first English

segment of the ClueWeb09 collection (∼50 million pages)
was 145 minutes (averaged over three trials; the fastest and
slowest running times differed by less than 10 minutes). The
size of the full positional index was around 66 GB.

On the retrieval end, we compared the performance of
two variants of our query engine: one that reads indexes
from local disk, and one that reads indexes from HDFS (the
architecture discussed in Section 2.2). Both conditions uti-
lized a single processor core on the cluster, and therefore
performance differences can be attributed to the different
methods of postings access. Average time per query (across
three trials) is shown in Table 1, for both queries from this
year’s web track (50 queries) and the 2004 robust track (100
queries) on the index built from the first English segment of
ClueWeb09. We compared bm25 and query-likelihood, and
in each case fetched 2000 hits.

These performance results were surprising in that reading
postings from local disk was actually slower than reading
postings over HDFS. One benefit of HDFS is the ability to
read postings corresponding to different query terms in par-
allel, since they may involve accessing different datanodes.
Reading multiple postings in parallel doesn’t make much
sense in a single machine environment unless there are mul-
tiple disks, and even then, it requires the retrieval engine
to model that fact explicitly. In contrast, parallel reads are
transparently handled by the HDFS API. The HDFS exper-
iments also benefited from caching, which makes repeated
access of postings faster (for common query terms, and also
across multiple experimental runs). Although HDFS itself
does not provide caching, since it resides on top of Linux,
caching is performed transparently at the OS level—we can
take advantage of the aggregate Linux buffer caches of all
HDFS datanodes “for free”. For this reason, the HDFS re-
sults are perhaps overly optimistic; more experiments are
required to tease apart the various factors that influence
performance.

Nevertheless, results show that our distributed architec-
ture is not only feasible, but may provide additional perfor-
mance advantages over separate batch and real-time archi-
tectures. In addition, we expect random access latencies to
improve over time as developers continue to improve HDFS.

ID Model P@5 P@10

UMHOObm25GS bm25 (global) 0.1040 0.1420
UMHOObm25IF bm25 (fusion) 0.1240 0.1640
UMHOOqlGS QL (global) 0.0920 0.1180
UMHOOqlIF QL (fusion) 0.0800 0.1080

Table 2: Official retrieval effectiveness for baseline
category A submissions based on trec eval. Results
of post-processing are shown in Table 3.

5.2 Effectiveness
Our official category A submissions were divided into two

types: baseline runs and post-processed runs. The baselines
examined four conditions: {bm25, query-likelihood}×{global
statistics, independent fusion} (the latter describes the re-
sults merging strategies outlined in Section 3.2). The En-
glish portion of the ClueWeb09 collection was divided into
ten different segments, each of which formed a partition in
our architecture. For bm25, we used k1 = 0.5 and b = 0.3.
For query likelihood, we used Dirichlet smoothing with μ =
1000. Official results for baseline runs based on trec eval are
shown in Table 2. We were quite surprised that the inde-
pendent fusion approach was more effective than the global
statistics approach; this may be due to a bug, since the task
of propagating global statistics back to the individual par-
tition indexes introduced an additional layer of complexity.
However, see additional discussions below.

The post-processed runs used the filtering and rerank-
ing strategy described in Section 4; official results based
on trec eval are shown in Table 3. The second column
of the table shows which of the baseline runs were post-
processed. Spam, adult, and quality scores were found in
Yahoo!’s metadata store for approximately 95% of the URLs
retrieved by the baseline runs. Note that the scores were
computed over the version of the document at the time of
run submission, which may differ from the crawled version
in the ClueWeb09 collection.

Based on the Wilcoxon signed-rank test, we observe large
and statistically-significant improvements (p < 0.01) in P@5
and P@10 for yhooumd09BGC and yhooumd09BGM, post-
processed versions of the baseline bm25 (with global statis-
tics) run. Furthermore, moderate filtering was found to be
more effective than conservative filtering. Moderate filtering
was 10% better than conservative filtering for P@5 and 6%
better for P@10 (both n.s.). Table 4 shows the queries from
the yhooumd09BGM run that were the most improved, in
terms of absolute P@10, as the result of post-processing. In
almost every case, these queries initially retrieved no rele-
vant items in the top 10, but found 7 or more after post-
processing.

Somewhat surprisingly, the improvements observed for the
yhooumd09BFM run were not statistically significant. One
possible explanation for this is that the baseline system (i.e.,
UMHOObm25IF) retrieved many non-relevant documents
that also happened to not be spam, adult, or low qual-
ity, thereby nullifying the effect of the filtering and rerank-
ing. Another possible explanation is that many of the z-
transformed scores were close to zero, which caused our doc-
ument quality score adjustments to have a negligible effect
on the ranking.

Given the success of this simple, heuristic strategy, it is
likely that a more formal learning to rank approach could



ID Base Setting P@5 P@10

yhooumd09BFM UMHOObm25IF: bm25 (fusion) Moderate 0.1520 (+23%) 0.1640 (0%)
yhooumd09BGC UMHOObm25GS: bm25 (global) Conservative 0.3880 (+273%)* 0.3820 (+169%)*
yhooumd09BGM UMHOObm25GS: bm25 (global) Moderate 0.4280 (+312%)* 0.4040 (+185%)*

Table 3: Official retrieval effectiveness for post-processed category A runs based on trec eval (relative gains
shown in parentheses). A single asterisk denotes a statistically-significant difference according the Wilcoxon
signed-rank test at the p < 0.01 level.

StatMAP Method MTC Method
ID Model MAP MRP MP@30 MnDCG eMAP eRprec eP5 eP10

UMHOObm25B bm25 0.2037 0.2848 0.3967 0.3718 0.0461 0.1048 0.3496 0.3849
UMHOOqlB QL 0.1874 0.2761 0.3779 0.3416 0.0436 0.1027 0.2810 0.3395
UMHOOsd MRF 0.2142�◦ 0.3023�◦ 0.4272�• 0.3885�• 0.0476�• 0.1068�• 0.3458�• 0.3999�•

UMHOOsdp MRF pruned 0.2138�◦ 0.2993�◦ 0.4251�• 0.3860�• 0.0476�• 0.1068�• 0.3436�• 0.3991�•

Table 5: Retrieval effectiveness for category B runs. Comparing the two MRF models to the two baseline
models: � indicates significantly better than bm25 (p < 0.05), � indicates n.s.; • indicates significantly better
than QL (p < 0.05), ◦ indicates n.s. (all significance tests performed with the Wilcoxon signed-rank test).

Query Before After

diversity 0.0 1.0
inuyasha 0.0 1.0

atari 0.0 1.0
dogs for adoption 0.0 1.0

dinosaurs 0.0 0.9
espn sports 0.1 0.9

euclid 0.0 0.8
appraisals 0.0 0.7
hoboken 0.0 0.7

the secret garden 0.0 0.7

Table 4: Queries most improved as the result of
post-processing in terms of P@10.

result in even better retrieval effectiveness [11]. It would
have been difficult to take such an approach this year, given
the lack of training data on the ClueWeb09 collection, but it
should be possible, at least to some extent, for future tasks
that make use of the data.

Results for category B runs are shown in Table 5, based
both on the statistical evaluation (StatMAP) method [1] and
the Minimal Test Collection (MTC) method [3]. The first
two models used features based on single term occurrences
(bm25 and query-likelihood), while UMHOOsd combined
term-dependence features such as ordered and unordered
phrases with individual term occurrences using the Markov
Random Field (MRF) retrieval framework. The single-term,
ordered, and unordered clique types used in the MRF were
assigned weights of 0.82, 0.09, 0.09, respectively. In or-
der to consider retrieval efficiency, in run UMHOOsdp we
pruned cliques based on idf: if a term’s idf was less than 0.12
then cliques containing the term were pruned. Although
the pruning threshold of 0.12 is relatively conservative for
web-scale collections, we did see a drop in query evaluation
time compared to the full MRF model, without a signifi-
cant impact on effectiveness. Our simple pruning technique
was performed at query time and hence could be adapted to
query-dependent characteristics.

Details of significance testing comparing the two MRF
models and the two baseline models are also shown in Ta-
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Figure 5: Spam density as a function of rank depth
for category A (circle) and category B (diamond).

ble 5. The pruned and unpruned MRF models were statis-
tically indistinguishable, but both MRF models were signif-
icantly better than both baseline models for many metrics.

5.3 Category A vs. Category B Quality
In addition to using the Yahoo! classifiers to improve re-

trieval effectiveness, we also used them to compare the qual-
ity of the category A and category B document sets. In our
first experiment, we compared the spam density of docu-
ments retrieved from category A and category B using the
50 queries. Spam density is defined as the percentage of re-
sults returned, up to a certain rank depth, that is filtered
as spam. Figure 5 plots the spam density as a function
of rank depth for both sets of documents (category A run
with bm25, global statistics vs. category B run with bm25).
First, the plot clearly shows that category A has a much
higher spam density than category B across all ranks. This
is not unexpected, as the ClueWeb09 collection represented
a best-first crawl, so the larger category A document set
contained documents that were lower in quality. Another
interesting characteristic of the plot is that the spam den-



Spam
Category A Category B

appraisals (20.0%) air travel information (10.0%)
poker tournaments (19.5%) cheap internet (6.7%)
elliptical trainer (13.6%) website design hosting (6.3%)
used car parts (12.7%) cell phones (4.9%)

cell phones (12.4%) poker tournaments (4.7%)

Adult
Category A Category B

french lick resort and casino (0.25%) the current (1.85%)
toilet (0.15%) toilet (0.45%)

cheap internet (0.15%) french lick resort and casino (0.30%)
inuyasha (0.15%) inuyasha (0.25%)

the secret garden (0.15%) the secret garden (0.25%)

Table 6: Queries with highest density of spam (top) and adult content (bottom).
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Figure 6: Average result quality vs. rank depth for category A (left) and category B (right); higher is better.

sity tends to be the highest at the top ranks and decreases
farther down the ranked list. This suggests that traditional
information retrieval models such as bm25 are highly sus-
ceptible to spam and that spammers are very good at get-
ting their documents ranked highly when ranking is based
on text alone. Table 6 (top) shows the individual queries
with the highest spam density for categories A and B (up
to 2000 hits). The query-by-query analysis shows overlap
in the spammable queries and reaffirms that spam is much
more prevalent in category A.

We also measured the adult density, which is the percent-
age of results, to a fixed rank depth, that is filtered as adult.
While the spam density for certain queries was often very
high (up to 20%), the adult densities were significantly lower,
which is either an artifact of the data collection (low adult
coverage) or of the queries themselves. Table 6 (bottom)
shows the 5 queries with the highest adult density for the
two document sets (up to 2000 hits). Somewhat interest-
ingly, category B tends to have larger adult densities than
category A, which would indicate that category B may con-
tain a larger fraction of adult pages than category A or that
the adult pages are simply more ‘retrievable’ in category B.
While most of the high adult density queries contain terms
that may lead to adult results, it was surprising to see the
rather innocuous query “the current” make the list.

The difference in document quality may also explain why

the independent fusion approach to results merging was more
effective than global statistics. If the average quality, spam
density, and adult density of each segment of the ClueWeb09
collection were equal, then one would expect the use of global
statistics to be more effective. On the other hand, if there
is a high variance in quality across the segments, then in-
dependent fusion will rank the best documents from each
partition highly, some of which will be higher quality (i.e.,
those returned from the high quality segment) than oth-
ers. For example, consider an index with just two segments,
where segment X is full of spam and segment Y has no spam.
In addition, suppose spam documents rank very highly for
certain queries. In this case, global statistics may return
mostly documents from segment X, while independent fu-
sion will return a mixture of documents from X and Y, and
therefore have better retrieval effectiveness.

Finally, we compare the average quality of the results re-
trieved for the two document sets. Figure 6 plots the average
quality as a function of rank depth for category A (bm25,
global statistics) on the left and category B (bm25) on the
right; higher is better. Note that the vertical axes are on the
same scale, so points on the two plots can be meaningfully
compared. Trendlines are added to the plots for illustrative
purposes to aid in comparison. These plots show results to
depth 2000, which, as we described earlier, is the number of
baseline results we used for filtering and reranking. These



plots show that the results retrieved from category B are
consistently higher quality than the results retrieved from
category A. The other point to notice is that the category B
trendline is relatively flat, indicating almost constant docu-
ment quality across all depths, while the category A trend-
line is more quadratic, increasing until around depth 1000
and then decreasing. The shape of the category A curve can
be explained, in part, by Figure 5, which shows that spam
density is higher early in the ranked list. Since spam plays
a role in determining document quality, it is natural for the
average quality curve to be inversely related to the spam
density curve in this way.

6. CONCLUSIONS
The transition from single-machine to cluster-based archi-

tectures in information retrieval research is inevitable, and
the availability of the ClueWeb09 collection propels the aca-
demic community in the right direction. This development
provides an opportunity to reexamine many aspects of in-
formation retrieval in a distributed processing environment
for web-scale collections. In Ivory, we have explored three
such aspects: an HDFS-based retrieval architecture, scalable
indexing algorithms with MapReduce, and webpage classifi-
cation. There is, of course, much more work to be done.
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