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ABSTRACT
Cross-language information retrieval today is dominated by techniques that rely principally on
context-independent token-to-token mappings despite the fact that state-of-the-art statistical
machine translation systems now have far richer translation models available in their
internal representations. This paper explores combination-of-evidence techniques using
three types of statistical translation models: context-independent token translation, token
translation using phrase-dependent contexts, and token translation using sentence-dependent
contexts. Context-independent translation is performed using statistically-aligned tokens in
parallel text, phrase-dependent translation is performed using aligned statistical phrases, and
sentence-dependent translation is performed using those same aligned phrases together with an
n-gram language model. Experiments on retrieval of Arabic, Chinese, and French documents
using English queries show that no one technique is optimal for all queries, but that statistically
significant improvements in mean average precision over strong baselines can be achieved by
combining translation evidence from all three techniques. The optimal combination is, however,
found to be resource-dependent, indicating a need for future work on robust tuning to the
characteristics of individual collections.
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1 Introduction
Cross-Language Information Retrieval (CLIR) is the problem of retrieving documents relevant to
a query written in a different language. There are two main approaches to tackle this problem:
translating the query into the document language, or translating documents into the query
language. Query translation has become the more popular approach for experimental work due
to the computational feasibility of trying different system variants without repeatedly translating
the entire document collection (Oard, 1998; McCarley, 1999).

Query translation approaches for CLIR can be pursued either by applying a Machine Translation
(MT) system or by using a token-to-token bilingual mapping, with or without translation
probabilities. These approaches have complementary strengths: MT makes good use of context
but at the cost of typically producing only one-best results, while token-to-token mappings
can produce n-best token translations but without leveraging available contextual clues. This
has led to a small cottage industry of what we might refer to as “context recovery” in which
postprocessing techniques are used to select or reweight translation alternatives, usually based
on evidence from term co-occurrence.

We argue that this false choice between MT and n-best token-by-token translation results from
thinking of MT systems as black boxes. A modern statistical MT system has internally a series of
increasingly rich representations that are exploited during the training and decoding processes.
First, token alignments are generated for each training sentence pair, a process that also creates
context-independent token-to-token translation probabilities. Second, these alignments are
generalized to learn a Synchronous Context-Free Grammar (SCFG), in which probabilistic rules
describe the translation of larger units of text. Finally, the translation grammar is combined
with a language model to produce translations of entire sentences. As the whole process is
statistically generated, it is at any point able to produce a ranked list of the highest scoring
translations rather than only the one best choice. Although it is desirable to exploit these
internal representations when performing retrieval, one possible disadvantage of using such
a complex translation model is efficiency. However, modern decoders, e.g., cdec (Dyer et al.,
2010), use pruning methods to efficiently search for the most likely translations of a given text.

In this paper, we describe two ways to exploit these internal representations and construct
context-sensitive term translation probabilities. One method is to extract a context-aware
portion of the SCFG by selecting only the grammar rules that apply to a given query. Using
token alignments within each rule, a probability distribution can be constructed to represent
the translation candidates for each query token, an approach that we refer to as “phrase-based.”
Another solution is to perform translation in context using the full MT system on the entire
query and then to reconstruct context-sensitive token translation probabilities by accumulating
translation likelihood evidence from each of the top n query translations.

These context-sensitive token translation probabilities can then be used in the same way as
context-independent probabilities. In this work we use a technique based on mapping term
statistics before computing term weights (Pirkola, 1998; Darwish and Oard, 2003), leading to a
representation known as Probabilistic Structured Queries (PSQ). By doing this, we establish a
strong context-independent “token-based” baseline that we can then compare directly with our
proposed context-sensitive approaches.

Experiments on TREC 2002, NTCIR-8, and CLEF 2006 CLIR tasks, with topics in English and
documents in Arabic, Chinese, and French, respectively, show that our approach consistently
yields significant improvements over this baseline. The best results are achieved when we
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perform a linear interpolation of all three approaches (query-based, phrase-based, and token-
based). The remainder of this paper is organized as follows: Related work is described in
Section 2, followed by our proposed approaches in Section 3, evaluation on the three collections
in Section 4, and conclusions in Section 5. All of our code and test data are available as part of
the open-source Ivory retrieval engine, available at http://ivory.cc/.

2 Background and Related work

Drawing inspiration from MT, Ponte and Croft (1998) introduced a monolingual information re-
trieval approach based on language models. This approach, which models the retrieval problem
as if some noisy channel had corrupted some document into the query, was later extended by
Berger and Lafferty (1999) and others. Combining language models with translation models
to perform CLIR was a natural next step, and that approach yielded substantial improvements
over earlier dictionary-based baselines, reporting Mean Average Precision (MAP) scores in the
range of 90% of monolingual comparison conditions (Xu and Weischedel, 2005; Kraaij et al.,
2003; Federico and Bertoldi, 2002). Nie (2010) summarizes this line of work well.

One limitation of applying language and translation models in CLIR is that they have mostly
focused on isolated tokens (i.e., unigram models). To address this, there has been a substantial
amount of work on exploiting query context in CLIR, dominated by approaches that use term
co-occurrence statistics to select the most appropriate set of translation terms, based on some
cohesion measure (Gao et al., 2006; Liu et al., 2005; Adriani and Rijsbergen, 2000; Seo et al.,
2005). Expressing term dependency relations explicitly has been shown to produce good
results in monolingual retrieval (Gao et al., 2004; Metzler and Croft, 2005), but extending
that idea to CLIR has proven not to be as straightforward as one might expect. The closest
approximation to be widely explored has been translation of multi-word expressions (so-
called “phrase translation,” although the “phrases” are often statistical rather than linguistic
phenomena) in order to limit polysemy effects (Adriani and Rijsbergen, 2000; Arampatzis
et al., 1998; Ballesteros and Croft, 1997; Chen et al., 2000; Meng et al., 2004; Zhang et al.,
2007). Gao et al. (2012) recently introduced a query expansion approach also inspired by MT,
modeling how query tokens are transformed into document tokens based on query context.

Inside an MT system we find a rich representation of alternative translations of the source
“sentence” (which in our case is a query). MT-based CLIR approaches typically use one-best
results since it has proven to be convenient to treat MT systems as black boxes (Magdy
and Jones, 2011). One early CLIR system did try augmenting MT output using a bilingual
dictionary (Kwok, 1999) in order to include alternative translations. More recently, Nikoulina
et al. (2012) described techniques to maximize MAP when tuning an MT system and rerank the
top n translations. Our approach focuses on combining different sources of evidence within an
MT system, and can be considered complementary to these techniques. Combining the n-best
derivations is also routinely used in speech retrieval (Olsson and Oard, 2009).

2.1 Context-independent Query Translation

As a baseline, we consider the technique presented by Darwish and Oard (2003). Given a
source-language query s = s1, s2, ..., we represent s in the target language as a Probabilistic
Structured Query (PSQ), where each token s j is represented by its translations in the target
language, weighted by the bilingual translation probability. These token-to-token translation
probabilities are learned independently from a separate parallel bilingual text using automatic
word alignment techniques, and we call this probability distribution Prtoken. In this approach,
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the score of document d, given source-language query s, is computed by the following equations:

Score(d|s) =
# terms∑

j=1

BM25(tf(s j , d), df(s j)) (1)

tf(s j , d) =
∑

{t i |Prtoken(t i |s j)>L}
tf(t i , d)Prtoken(t i |s j) (2)

df(s j) =
∑

{t i |Prtoken(t i |s j)>L}
df(t i)Prtoken(t i |s j) (3)

where L is a lower bound on translation probability. We also impose a cumulative probability
threshold, C , so that translation alternatives of s j are added (starting from the most probable
ones) until the cumulative probability has reached C . As shown above, we use the Okapi BM25
term weighting function (with parameters k1 = 1.2, b = 0.75), although in principle any other
weighting function can be substituted.

Let us demonstrate this “token-based” representation model by an example. Following an
Indri-like (Metzler and Croft, 2004) notation for query representations, the English query
Maternal leave in Europe yields the following PSQ under this model for target language French:

#comb(#weight(0.74 matern, 0.26 maternel)

#weight(0.49 laiss, 0.17 quitt, 0.09 cong, ...)

#weight(0.91 europ, 0.09 européen))

Some of the translations are omitted due to space constraints. The #comb operator corresponds
to the sum operator in equation (1), whereas the #weight operator is implemented as the
weighted sum in equations (2) and (3). Within the #weight structure, terms follow their
probabilities, which correspond to the Prtoken values in these equations. Notice that the
translation distribution for the source token leave is uninformed by the context maternity
leave, therefore the candidates laisser (Eng. let go, allow) and quitter (Eng. quit) have higher
probabilities than congé (Eng. vacation, day off) in this model.

2.2 Machine Translation for Cross-Language IR

State-of-the-art statistical MT systems typically use hierarchical phrase-based translation models
based on a Synchronous Context-Free Grammar (SCFG) (Chiang, 2005). In an SCFG, the rule
[X] || α || β || A || ℓ(α→ β) indicates that the context free expansion X → α in
the source language occurs synchronously with X → β in the target language, with a likelihood
of ℓ(α→ β).1 In this case, we call α the Left-Hand Side (LHS) of the rule, and β the Right-Hand
Side (RHS) of the rule. We use indexed nonterminals (e.g., [X,1]) since in principle more than
one nonterminal can appear on the right side. A sequence of token alignments A indicates
which token in α is aligned to which target token in β .

Consider the following four rules from an SCFG:
R1.[S] || [S,1] || [S,1]

R2.[S] || [X,1] || [X,1]

R3.[X] || [X,1] leav in europ || cong de [X,1] en europ || 1-0 2-3 3-4 || 1

R4.[X] || matern || matern || 0-0 || 0.69

In the above notation, S refers to the sentence; therefore, the first two rules are special rules,

1The likelihood function ℓ is not a probability density function because it is not normalized.
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describing that there is one sentential form, consisting of a single variable. In the third and
fourth rules, we see the structure of the English phrase and how it is translated into French.

In contrast to the baseline model, this approach can handle both token and phrase translations.
It can consider dependencies between query terms and therefore provide a more context-
sensitive and appropriate translation of a given query. On the other hand, it is more dependent
on training data and thus may not be as useful when the training set size is limited.

3 Context-Sensitive Query Translation

In this paper, we explore ways to improve the baseline token-translation model discussed above
by exploiting the internal representations of the MT system. We describe two ways to construct
a context-sensitive probability distribution for each query term, which can then be used directly
by a similarly structured PSQ to retrieve ranked documents using equation (1). The first of
these techniques (Section 3.1) was described in our previous paper and evaluated on a single
collection (Ture et al., 2012); the second approach is new.

3.1 Probabilities from n-best Derivations

In MT, decoding is the process that finds the most probable translation with respect to an
SCFG trained on a bilingual parallel corpus and a language model trained on monolingual
target-language text. To control computational complexity, most decoders search for the most
probable derivations by using pruning strategies.2 The efficiency of our approaches is discussed
in detail in Section 4.

When using one-best query translation, equations (1), (2) and (3) simplify to:

Score(d|s) =
m∑

i=1

BM25(tf(t(1)i , d), df(t(1)i )) (4)

where t(1) is the most probable translation of s, computed by:

t(1) = arg max
t
[ max

D∈D(s,t)
ℓ(t, D|s)] = arg max

t
[ max

D∈D(s,t)
TM(t, D|s)LM(t)]

= argmax
t

�
LM(t) max

D∈D(s,t)

∏
r∈D

ℓ(r)
�

(5)

where TM and LM correspond to the translation and language model scores, and D(s, t) is the
set of possible derivations that generates the pair of sentences (s, t) (e.g., the sequence of four
rules that translate the example query in Section 2.2 is one such derivation). The likelihood of
each grammar rule r, ℓ(r), is learned as part of the training process of the translation model,
by generalizing from token alignments on the training data (Chiang, 2007).

Decoders produce a set of candidate sentence translations in the process of computing equation
(5), so we can generalize our model to consider the n candidates with the highest likelihoods,
for some n > 1. We start by preprocessing the source query s and each candidate translation
t(k). For each source token s j , we use the derivation output to determine which grammar rules
were used to produce t(k), and the token alignments in these rules to determine which target
tokens are associated with s j in the derivation. By doing this for each translation candidate
t(k), we construct a probability distribution of possible translations of s j based on the n query

2We use derivation to make it clear that what results is a rule sequence, not just a translated string.
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translations. Specifically, if source token s j is aligned to (i.e., translated as) t i in the kth best
translation, the value ℓ(t(k)|s) is added to its probability mass, producing the formula for Prnbest:

Prnbest(t i |s j) =
1

ϕ

n∑
k=1

s j aligned to t i in t(k)

ℓ(t(k)|s) (6)

where ϕ is the normalization factor.3 We should emphasize that Prnbest is a well-defined
probability distribution for each s j , so if a source token is translated consistently into the same
target token in all n translations, then it will have a single translation with a probability of 1.0.
Mapping tf and df statistics from source to target vocabulary is achieved by replacing Prtoken
with Prnbest in equations (2) and (3).

Prtoken and Prnbest are similar in describing the probability of a target-language token given
a source-language token, but differ by how the probability values are learned. For both
approaches, we start from a large, potentially out-of-domain, sentence-aligned bilingual corpus.
This corpus is first token-aligned using a word aligner. From these token alignments, one can
directly deduce token translation probabilities, which correspond to Prtoken. In order to learn
Prnbest, we add the MT system as an intermediate component, which creates a translation model
from the token alignments, and then applies it (along with a language model) to the query text,
using a decoder. Therefore, the distribution is informed by the query context and its derivation.

The advantage of Prtoken is the ability to model all of the translational varieties existent in
the bilingual corpus, although these may be too noisy to properly translate a given query. For
Prnbest, on the other hand, we would expect the distribution to be biased in favor of appropriate
translations, but perhaps at the cost of some reduction in variety due to overfitting to the query
context. For comparison, below are the translation probabilities for the same example query:

#comb(#weight(0.91 matern, 0.09 maternel, ...)

#weight(1.0 cong) #weight(1.0 europ))

The overfitting issue is partially mitigated by using the n-best translation derivations, as opposed
to the “1-best translation” approach, which treats the MT system as a black box. However,
the lack of textual variety in the n most probable derivations is a known issue, caused by the
fact that statistical MT systems identify the most probable derivations (not the most probable
strings), many of which can correspond to the same surface form. This phenomenon is called
“spurious ambiguity” in the MT literature, and it occurs in both phrase-based (Koehn et al.,
2003) and hierarchical phrase-based MT systems (Chiang, 2007). For instance, according to
Li et al. (2009), a string has an average of 115 distinct derivations in Chiang’s Hiero system.
Researchers have proposed several ways to cope with this situation, and we plan to integrate
some of these in our future work. However, an alternative approach is to exploit grammar
rules directly: this allows us to increase variety without introducing noisy translations, and we
discuss this approach next.

3.2 Probabilities from the Translation Grammar

An alternative approach to exploit the MT system is to learn context-sensitive translation
probabilities directly from the translation grammar. Hierarchical phrase-based MT systems use
suffix arrays to extract all rules in an SCFG which apply to a given source text, requiring a

3Since a source token may be aligned to multiple target tokens in the same query translation, we still need to
normalize the final likelihood values.
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smaller memory footprint in the decoding phase (Lopez, 2007). We can use this feature to learn
a token translation probability mapping that is a middle point between Prtoken and Prnbest in
terms of context-aware choices and providing a varied set of translation alternatives.

We propose the following method to construct a probability distribution from a set of SCFG
rules: For each grammar rule, we use the token alignments to determine which source token
translates to which target token(s) in the phrase pair. Going over all grammar rules that apply
to a given query, we construct a probability distribution for each token that appears on the LHS.

More specifically, given a translation grammar G and query s, we first use a suffix array
extractor (Lopez, 2007) to obtain the subset of rules G (s) for which the source side pattern
matches s. For each rule r in G (s), we identify each source token s j on the LHS of r, ignoring
any non-terminal symbols. From the token alignment information included in the rule structure,
we can find all target tokens that s j is aligned to. For each such target token t i , the likelihood
value of s j being translated as t i is increased by the likelihood score of r. If there are multiple
target tokens, we increase the likelihood of each one equally. After repeating this process for all
rules in the subset, we have constructed a list of possible translations and associated likelihood
values for each source token that has appeared in any of the rules. We can then convert each
list into a probability distribution, Prphrase, by normalizing the likelihood scores:

Prphrase(t i |s j) =
1

ψ

∑
r∈G (s)

s j↔t i in r

ℓ(r) (7)

where ψ is the normalization factor and s j↔ t i represents an alignment between tokens s j
and t i . Prphrase is different than Prtoken because it takes query context into account. Basically,
we only look at the part of the grammar that applies to phrases in the source query, therefore
create a bias in the probability distribution based on this context. It is also different than Prnbest
because we do not perform any search, and there is no use of a language model. Thinking in
terms of the MT pipeline, the representation we are exploiting in this approach is the extracted
grammar, right before decoding has taken place, after token alignments have been generated.
In order to illustrate the intuition behind this approach, the same example query is represented
as follows using Prphrase:

#comb(#weight(0.68 matern, 0.06 maternel, ...)

#weight(0.35 cong, 0.24 laiss, 0.13 quitt, ...)

#weight(0.90 europ, 0.07 européen, ...))

When compared to Prtoken, notice that the translation distribution of leave shifts towards the
more appropriate translation congé as a result of this approach.

3.3 Combining Sources of Evidence

All three approaches for query translation (i.e., token-based, phrase-based, and query-based)
have complementary strengths, so we introduce a unified CLIR model by performing a linear
interpolation of the three probability distributions:

Prc(t i |s j;λ1,λ2) =λ1Prnbest(t i |s j) +λ2Prphrase(t i |s j) + (1−λ1 −λ2)Prtoken(t i |s j) (8)

Replacing Prtoken with Prc in equation (1) gives us the document scoring formula for the
combined model (call Scorec).
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Until now, we focused on the translation of single-token terms, but we can also use the n-best
derivation list to identify how multi-token “phrases” are translated in context. The right hand
side of the rules in the n most probable derivations provides us with statistically meaningful
target-language phrases, along with their associated probabilities (described by Prmulti below).
With this addition, we score each document by a weighted average of the single-token approach
(i.e., Scorec) and the sum of document scores for the multi-token terms:

Score(d|s;γ) =γScorec(d|s;λ1,λ2) + (1− γ)
∑

phrase p

BM25(tf(p, d), df(p))Prmulti(p) (9)

Prmulti(p) =
1

ψ

n∑
k=1

∑

rule r∈D(k)
p∈RHS(r)

ℓ(r) (10)

where ψ is the normalization factor and D(k) is the derivation of the kth best translation. Below
is the representation of the example query under this model, with γ set to 0.8:

#combweight(0.8 #comb(#weight(0.81 matern, 0.12 maternel, ...)

#weight(0.45 cong, 0.25 laiss, 0.10 quitt, ...)

#weight(0.95 europ, 0.04 européen, ...))

0.1 “en europ”, 0.08 “cong de”, 0.01 “cong matern”, ...)

The #comb structure represents Prc and the remaining multi-token terms represent Prmulti, all
extracted from the top n derivations. The #combweight operator corresponds to equation (9).

4 Evaluation

We evaluated our system on the latest available CLIR test collections for three languages:
TREC 2002 English-Arabic CLIR, NTCIR-8 English-Chinese Advanced Cross-Lingual Information
Access (ACLIA), and CLEF 2006 English-French CLIR. For the Arabic and French collections,
we used title queries because they are most representative of the short queries that searchers
frequently pose to web search engines. Chinese queries in the NTCIR-8 ACLIA test collection
are in the form of complete syntactically correct questions, but for consistency we treated them
as bag-of-words queries in our experiments with no special processing. The collections contain
383,872, 388,589 and 177,452 documents, and 50, 50, and 73 topics, respectively.

We learned our English-to-Arabic translation model using 3.4 million aligned sentence pairs
from the GALE 2010 evaluation. Our English-to-Chinese translation model was trained on
302,996 aligned sentence pairs from the FBIS parallel text collection. We trained an English-
to-French translation model using 2.2 million aligned sentence pairs from the latest Europarl
corpus (version 7) that was built from the European parliament proceedings.4

Token alignments were learned with GIZA++ (Och and Ney, 2003), using 5 Model 1 and
5 HMM iterations. An SCFG serves as the basis for the translation model (Chiang, 2007),
which was extracted from these token alignments using a suffix array (Lopez, 2007). We
used cdec for decoding, due to its support for SCFG-based models and its efficient C-based
implementation, making it faster than most of the other state-of-the-art systems (Dyer et al.,
2010). A 3-gram language model was trained from the target side of the training data for
Chinese and Arabic, using the SRILM toolkit (Stolcke, 2002). For French, we trained a 5-gram
LM from the monolingual dataset provided for WMT-12. The Chinese collection was segmented
using the Stanford segmenter (Tseng et al., 2005), English topics and the French collection

4http://www.statmt.org/europarl
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were tokenized using the OpenNLP tokenizer,5 and Arabic was tokenized and stemmed using
the Lucene package.6 For English and French, we also lowercased text, stemmed using the
Snowball stemmer, and removed stopwords.

4.1 Effectiveness

We used Mean Average Precision (MAP) as the evaluation metric. The baseline token-based
model yields a MAP of 0.2712 for Arabic, 0.1507 for Chinese, and 0.2617 for French. Direct
comparisons to results reported at TREC, NTCIR, and CLEF (respectively) are hard to make
because of differences in experimental conditions, but the comparisons we are able to make
suggest that these baseline MAP values are reasonable.7 For Arabic, the best reported results
from TREC-2002 were close to 0.40 MAP (Fraser et al., 2002), but those results were achieved
by performing query expansion and learning stem-to-stem mappings; our experiment design
requires token-to-token mappings (which result in sparser alignments). For Chinese, the NTCIR-
8 topics are in the form of questions, and systems that applied question rewriting performed
better than those that did not. Also, 15 of the questions are about people, for which our
vocabulary coverage was not tuned. If we disregard these 15 topics, our baseline system
achieves 0.1778, close to the best reported results with comparable settings, with a MAP of
0.181 (Zhou and Wade, 2010). For French, our baseline achieves close to the same score as the
one reported result at CLEF-2006 that did not incorporate blind relevance feedback (0.2606
MAP) (Savoy and Abdou, 2006).

As discussed in Section 3, we implemented three techniques to construct a term translation
probability distribution: Prnbest, Prphrase and Prtoken, described by equations (6), (7) and (1)
above.8 We assessed these three approaches by (i) comparing them against each other, and (ii)
measuring the benefit of a linear combination, i.e., Prc, described by equation (8).

Experiment results are summarized in Table 1 and illustrated in Figure 1. In that figure, we
provide three connected scatterplots of MAP scores within a range of values for λ1 and λ2. In
order to see the effectiveness of the interpolated model with respect to parameters λ1 and λ2,
we performed a grid search by applying values in increments of 0.1 (ranging from 0 to 1) to
the interpolated model Prc. For readability, figures only include a representative subset of λ2
settings, where different lines represent different values for λ2. To distinguish the extreme
settings of λ2 = 0 and λ2 = 1, we use a filled circle or square, respectively.

The left edge represents λ1 = 0, meaning that we do not use probabilities learned from the
n-best derivations (i.e., Prnbest) in our interpolation. Along the y-axis on the left edge, we see
results for various settings of λ2, which controls how much weight is put on Prphrase and Prtoken.
Within these settings, a particularly interesting one is when λ2 is set to 0. In this case, the
approach is solely based on context-independent translation probabilities (i.e., Prtoken), which
is the baseline model (call this condition A). When λ2 is set to 1, we rely on phrase-based
term translation probabilities (i.e., Prphrase, call this condition B). By contrast, at the right edge,
λ1 = 1, so we rely only on Prnbest when translating query terms (call this condition C). For

5http://opennlp.apache.org
6http://lucene.apache.org
7The best results often employ blind relevance feedback, multiple lexical resources and/or very long queries. While

these techniques can be useful in deployed applications, we have chosen not to run such conditions in order to avoid
masking the effects that we wish to study.

8We fixed C = 0.95, L = 0.005, n= 10 for all models after manually trying a range of values.
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(c) CLEF 2006 English-French CLIR task

Figure 1: Effectiveness results.

reference, the dotted horizontal line represents simply taking the one-best translation from the
MT system (i.e., described by equation (4), call this condition D).

In the case of the Arabic collection, we observe a strictly decreasing trend for the MAP scores as
λ2 decreases, and the best results are obtained when λ1 is 0 and λ2 is 1.0 (call the condition
with the best MAP score E). In other words, the interpolation yields a maximum 0.3058 MAP
when it was based entirely on Prphrase, ignoring distributions Prtoken and Prnbest. For the Chinese
collection, λ1=0.2 and λ2=0.7 yields the best result (MAP=0.1916), whereas effectiveness
peaks at λ1=0.3 and λ2=0.4 for the French collection, with a MAP score of 0.3084.

Based on the randomized significance test proposed by Smucker et al. (2007), the combined
approach (E) outperforms all models (except for the phrase-based approach) in the Arabic
collection with 95% confidence. When we ran the same test on the other two collections, we
found that the combined approach is significantly better than the baseline (A) and 1-best (D)
approaches for Chinese, whereas MAP is significantly higher than baseline A for French. These
results confirm that the complementary advantages of each model can be combined into a
single superior model using our approach.

We also experimented with the multi-token term representation in equation (9), by varying
the γ parameter. With γ set empirically to 0.8, the MAP increased by 0.005 for French, and
remained about the same for Arabic and Chinese.

When the three individual models (conditions A, B and C) are compared (i.e., ignoring the
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Condition
MAP

Arabic Chinese French
A: λ1=0, λ2=0 (Prtoken) 0.2712 0.1507 0.2617
B: λ1=0, λ2=1 (Prphrase) 0.3058 0.1867 0.2868
C: λ1=1, λ2=0 (Prnbest) 0.2431 0.1709 0.2979
D: 1-best 0.2473 0.1535 0.2829
E: best {λ1,λ2} 0.3058a,c,d 0.1916a,d 0.3084a

Table 1: A summary of experimental results under different conditions, for all three CLIR tasks.
Superscripts indicate if the best result is significantly better than conditions A, B, C, and D.

interpolated results), the phrase-based model (B) is significantly better than the token-based
baseline (A) for Arabic and Chinese, but statistically indistinguishable from the same baseline
model in the case of French. For French, the best retrieval effectiveness results from the n-best
full query translation model (C), significantly better than the baseline model (A). This shows
that there is no individual model that outperforms the rest in all three collections. The real
strength of our approach is therefore to introduce a unified probabilistic model that can combine
all of these different approaches in a principled manner.

For topic-specific analysis, we looked at the distribution of the average precision (AP) differences
between the various models. We observe that our best interpolated model (E) yields better
AP than the token-based baseline model (A) for 36 of the 43 Arabic topics in which there was
a noticeable difference (7 of the 50 Arabic topics exhibited differences of 0.001 or less). For
the Chinese collection, the same was true for 41 of 57 topics (with 16 exhibiting a negligible
difference), whereas the comparable statistic is 29 of 44 for French.

For space reasons, we illustrate these differences only for French. Figure 2(a) plots the AP
improvement of the best interpolated model (E) and the one-best MT approach (D) over (or the
average degradation below) the token-based baseline (A), sorted left to right by decreasing AP
improvement for the interpolated model (E); Figure 2(b) similarly plots the same AP differences
for the phrase-based (B) and n-best full query translation approaches (C), again with reference
to the token-based baseline (A), with topics sorted in the same order to facilitate comparison.
These plots make it quite clear that the three approaches vary in their per-topic effectiveness.
Rather than slight variations in all of the topics, we see several cases in which one of the models
is superior to the others. For instance, the n-best full query translation approach is a clear
winner for topics 26, 36 and 42, whereas the phrase-based approach outperforms for topics 27
and 35. Despite its drawbacks, there are topics in which the token-based model is superior to
our more sophisticated approaches, notably topics 34 and 41. Once again, this analysis supports
our argument that combining these three probabilistic models into one unified approach can
capture some of the best of each. In general, we expect the interpolated model to be more
robust, since it has access to more evidence than the individual models.

In practice, we would like to select model parameters without observing all the test topics.
Therefore, we ran 10-fold cross-validation experiments on each collection, selecting parameters
that maximize MAP on nine folds and evaluating on the remaining one. This method yields a
MAP of 0.2979 for Arabic, 0.1733 for Chinese, and 0.2872 for French, all significantly better
than the token-based baseline (A). We also explored if we could use two of the collections
to tune parameters for the third. For this, we first ranked each (λ1,λ2) pair by MAP on each
collection. In order to select the parameters for a particular collection, we added the ranks

2695



-0.5

-0.4

-0.3

-0.2
-0.1

 0

 0.1

 0.2

 0.3

 0.4
 0.5

 0.6

 0.7

 0.8

Im
pr

ov
em

en
t o

ve
r b

as
el

in
e 

(A
)

Topic id26 27 36 42 35 34 4120 45

1-best
Interpolated

(a) Interpolated and 1-best models vs. the token-based baseline approach.
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(b) Phrase- and query-based (i.e., n-best) models vs. the token-based baseline approach.

Figure 2: Per-topic AP improvement over token-based baseline (condition A) for French.

from the other two collections and picked the one with the lowest sum. Using this method,
the selected parameters were (0.1,0.1) for Arabic, (0.3,0.5) for Chinese, and (0.1,0.1) for
French. When compared to the token-based baseline (A), this approach showed significant
improvements only for Chinese. We conclude from this analysis that the optimal combination
of models depends on the collection, language, and resources. Once these are fixed, we can
use a subset of the topics to appropriately tune parameters for the rest. However, better tuning
methods need to be devised for a truly robust approach to combining these CLIR models.

4.2 Efficiency

We compared the various CLIR approaches in terms of efficiency (query evaluation time),
performing experiments on a machine running Red Hat Linux on a 2.4 GHz processor. We pro-
cessed the Arabic topics using each model and measured running time per query in milliseconds.
Averages over three repeated runs are reported in Table 2 (with 95% confidence intervals).

As described before, there are three processes in the MT pipeline: token alignment, grammar
extraction, and decoding. Token alignment is query-independent and required for all three
approaches, so we did not include it in our running time comparison of running times. For the
construction of Prphrase, we only need to extract grammar rules that apply to each given query,
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Process Prtoken Prphrase
Prnbest Prc1-best 5-best 10-best

MT
Grammar extraction - 7.57

Decoding - - 134.94 134.94

IR
Initialization negligible 64.38 negligible 64.38
Generation 48.12 negligible 5.80 59.47 62.25 49.11

Ranking 545.64 514.17 97.64 158.81 179.07 601.95
Total time (in ms) 594±22 586±13 246±15 361±28 383±22 858±20

Table 2: Average running times for processes in the CLIR pipeline (in ms).

whereas Prnbest also requires decoding.9

The remaining processes that we need to consider are part of the IR pipeline: initialization of
the CLIR model, generation of query representations in the target language, and ranking of the
most relevant documents in the collection. We only count query-dependent initialization costs,
since other costs such as loading the bilingual dictionary need to be done only once, even with
many queries. The input of the generation step is the source-language query, and the output is
a PSQ that represents that query in the target language. In the phrase-based method, this step
takes a negligible amount of time, because the probability distribution is already in memory at
the beginning of this step, and it is very small (i.e., probabilities for a few query terms only).
For Prnbest, generation time rises linearly as n is increased.

Ranking time depends on the complexity of the query representation. With more complex
representations, it is possible to increase effectiveness, but at the cost of efficiency. Therefore, a
desirable CLIR approach would express all the relevant information and nothing more. The
distributions Prtoken and Prphrase tend to include more translation alternatives per query term,
resulting in a more complex representation and longer ranking time. As a result, interpolating
all three distributions generates a complex representation as well.

When we look at the total running times in Table 2, we observe that the n-best approach is
significantly more efficient than the token-based baseline, even though it requires additional
MT processes to fully translate the queries. When n= 1, the reduction in total running time is
nearly 60%. The savings become more modest as n increases, approximately 39% and 35%
for 5-best and 10-best MT approaches. Increasing n also improves effectiveness, thus there
is a tradeoff to consider when deciding on the value for n. There is a similar tradeoff for the
token-based approach: the representation can be simplified if more aggressive thresholding is
used, e.g., if C increased in equation (1); however, this may result in a less effective model.

We do not see the same efficiency improvements from reduction in query complexity with the
phrase-based model; the query complexity is similar to the baseline approach. As a result, the
phrase-based approach runs in about the same total time. However, the MAP score improves
considerably for all of the collections, so we can say that Prphrase is superior to Prtoken.

The combined model Prc yields the highest MAP scores but also takes the longest time to
complete. When compared to the baseline model, running time increases by 44%, which
seems acceptable given the consistently significant improvements. We should note that our
implementation is not fully optimized, and is open to further improvements in the future.

As a summary of our evaluation, we believe that the best choice depends on user expectations.
For a faster and possibly more effective model, Prnbest and Prphrase seem to be good alternatives

9 It is reasonable to assume that the decoder time to find top n translations is the same as finding the one-best result.
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to Prtoken. For best effectiveness, the interpolation of the three probability distributions is a
good choice, providing significantly better results at the cost of additional complexity.

5 Conclusions and Future Work

In this paper, we introduced a theoretical framework that uses a statistical translation model for
cross-language information retrieval. Our approach combines the representational advantage
of probabilistic structured queries with the richness of the intermediate information produced
by translation models. We proposed two ways of exploiting the internal representation of
translation models to learn context-sensitive term translation probabilities: (1) aggregate
information from the n-best translation outputs by an MT decoder, or (2) extract the subset of
the translation grammar that applies to a given query, and use the token alignments in each
rule to construct a probability distribution. Although using translation models for CLIR is not
a novel approach, we have introduced novel ideas on how one can utilize the rich internal
representation of MT systems for this task.

We evaluated our models on an English-Arabic task from TREC 2002, an English-Chinese task
from NTCIR-8, and an English-French task from CLEF 2006, finding in all three cases that an
optimal linear combination of the three approaches can significantly improve MAP, but that the
optimal parameters vary by collection. We also compared approaches in terms of efficiency and
showed that our framework provides a set of choices, allowing a beneficial tradeoff between
improving efficiency and effectiveness. Because we used only one collection per language,
experiments with multiple collections for the same language will be needed before we can
begin to speculate on whether these differences are language-dependent, collection-dependent,
or some combination of the two. Additionally, we would like to try this approach on more
languages to further study the consistency in improvements, and also with different parallel
corpora and monolingual language modeling collections, in order to tease out whether the
differences we are seeing in the optimal combination weights are resource dependent (varying
principally with different parallel corpora and/or language models).

In terms of modeling, we plan to revisit the rather ad hoc way we have incorporated multi-word
expressions, exploring ways of leveraging them in each model separately rather than at the final
evidence combination stage. Also, since the benefit of performing full machine translation would
be expected to increase as available context increases, we would like to explore the potential
for translating documents in addition to queries. Following the same methods described in this
paper, we could learn a new set of probability distributions from the document translations,
which could be combined with the current three approaches to construct an even richer and
possibly more accurate CLIR model. We also plan to explore the effect of using a phrase-based
MT system as an alternative to the SCFG-based model in our experiments.

In conclusion, we have introduced ways of using statistical translation models for CLIR that
take greater advantage of the capabilities of current statistical MT systems, and we hope that
the promising results we have reported will spur the community to further explore this space.
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