
19

Exploiting Representations from Statistical Machine Translation
for Cross-Language Information Retrieval
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This work explores how internal representations of modern statistical machine translation systems can be
exploited for cross-language information retrieval. We tackle two core issues that are central to query trans-
lation: how to exploit context to generate more accurate translations and how to preserve ambiguity that
may be present in the original query, thereby retaining a diverse set of translation alternatives. These two
considerations are often in tension since ambiguity in natural language is typically resolved by exploiting
context, but effective retrieval requires striking the right balance. We propose two novel query translation ap-
proaches: the grammar-based approach extracts translation probabilities from translation grammars, while
the decoder-based approach takes advantage of n-best translation hypotheses. Both are context-sensitive, in
contrast to a baseline context-insensitive approach that uses bilingual dictionaries for word-by-word trans-
lation. Experimental results show that by “opening up” modern statistical machine translation systems, we
can access intermediate representations that yield high retrieval effectiveness. By combining evidence from
multiple sources, we demonstrate significant improvements over competitive baselines on standard cross-
language information retrieval test collections. In addition to effectiveness, the efficiency of our techniques
are explored as well.
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1. INTRODUCTION

Cross-language information retrieval (CLIR) is the problem of retrieving documents
relevant to a query written in a different language. There are two main approaches to
tackling this challenge: translating the query into the document language or translat-
ing documents into the query language. Query translation has become the more pop-
ular approach for experimental studies due to the computational feasibility of trying
different system variants without repeatedly translating the entire document collec-
tion [Oard 1998; McCarley 1999]; it is also the approach we adopt in this work.
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19:2 F. Ture and J. Lin

There are currently two popular approaches to query translation for CLIR: one could
translate the query by taking advantage of a machine translation (MT) system, or al-
ternatively, one could perform word-by-word translation, most often using a bilingual
dictionary induced automatically from parallel text. These approaches have comple-
mentary strengths: MT makes good use of context but at the cost of typically producing
only one-best results—in other words, it “collapses” ambiguity during translation and
eliminates diversity in translation choices. On the other hand, bilingual dictionaries
can easily produce multiple translations, thus providing diverse translation alterna-
tives that preserve ambiguities present in the original source—but such techniques
often have difficulty leveraging available contextual clues. There is a tension between
these two considerations, since ambiguity in natural language is usually resolved by
taking context into account. Reducing ambiguity allows for more focused retrieval, but
there are downsides to trying to eliminate ambiguity completely: first, there is the
danger of brittleness, if the system’s single interpretation is incorrect; second, infor-
mation needs are often vague and ill-defined, thus rendering disambiguation a futile
endeavor. These are themes we will return to throughout this article, and a high-level
summary of our contribution is an exploration of how to best balance context and ambi-
guity/diversity given the range of modern techniques in statistical machine translation.

We argue that query translation using either single-best MT output or bilingual dic-
tionaries is a false choice that stems from thinking of MT systems as black boxes. Inter-
nally, a modern statistical machine translation system builds a series of increasingly-
rich intermediate representations that can be exploited for cross-language information
retrieval. The contribution of this work is “opening up” such a system and exploring the
extent to which its internal representations can be leveraged for CLIR. In particular,
the following.

(1) Modern statistical machine translation systems begin by performing word align-
ment on parallel text, the output of which is context-independent word-to-word
translation probabilities. These distributions serve as a query translation baseline
in CLIR using what we call the word-based approach.

(2) From word alignments we can generate translation grammars in the form of rules
that describe the translation of larger textual units. Two popular types of gram-
mars are phrase-based grammars [Koehn et al. 2003; Och and Ney 2004; Marcu
and Wong 2002] and hierarchical phrase-based grammars [Chiang 2005, 2007].
These translation grammars capture context beyond individual words, but differ in
complexity, expressivity, and translation quality. We present novel techniques for
exploiting translation grammars for CLIR using what we refer to as the grammar-
based approach.

(3) The translation grammar (flat or hierarchical) can be combined with a language
model to produce complete translations (a process called decoding). Although many
applications only use the single-best hypothesis, MT systems can generate n-best
hypotheses with equal ease. We present novel techniques for renormalizing n-best
MT output for CLIR using what we refer to as the decoder-based approach.

(4) Finally, all three approaches can be integrated in an interpolated model that com-
bines evidence from different sources.

We characterize the second and third approaches as context-sensitive translation, in
contrast to the first approach, which is context-independent. Successive stages in the
standard MT pipeline capture different trade-offs between context and ambiguity (and
by extension, diversity). Translation grammars go beyond single words to model mul-
tiword phrases and long-distance dependencies; decoding adds contextual information
from the language model. However, at each stage, the diversity of translation alterna-
tives is reduced, such that at the end of the MT pipeline, we are left with only n-best
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translations. Our study explores the trade-off between these two factors in the context
of CLIR effectiveness as well as efficiency. This work pulls together results that have
been incrementally reported in a SIGIR poster [Ture et al. 2012b], a COLING confer-
ence paper [Ture et al. 2012a], a SIGIR short paper [Ture and Lin 2013], and a Ph.D.
dissertation [Ture 2013]. We seek to synthesize results from these previous publications
in a manner that has not yet been accomplished. We summarize our findings as follows.

—Experiments on three test collections in different languages consistently show that
context-sensitive models are more effective than the context-independent baseline.

—When comparing the grammar-based approach and the decoder-based approach,
the former is more effective overall for two of the three collections. However, the
interpolated model is the most effective but requires training data for parameter
tuning.

—With the grammar-based approach, hierarchical translation grammars yield higher
retrieval effectiveness than flat translation grammars, but this advantage appears to
disappear with the decoder-based approach. The greater expressivity of hierarchical
grammars and their ability to capture long-distance dependencies does not appear to
be important once a language model is introduced due to the short length of queries.

—The grammar-based approach exhibits less per-topic variation than the decoder-
based approach—for some topics, the decoder-based approach fails spectacularly.
Here, again, the interpolated model is the most effective overall—it is almost always
better than the worst individual approach and often close to the best individual
approach.

—In terms of striking the right balance between effectiveness and efficiency, both the
grammar-based approach and decoder-based approach represent good options. While
the interpolated model is more effective, it is also much slower due to the complexity
of the queries generated.

The remainder of the article proceeds in the following manner: First, we begin with
an overview of how modern statistical machine translation systems work in Section 2,
followed by a discussion of related work in Section 3. Next, we describe the context-
independent word-based approach for query translation in CLIR: the technique of
Darwish and Oard [2003] provides an experimental baseline (Section 4). We continue
in Section 5 by detailing our two novel context-sensitive query translation approaches:
one that leverages the translation grammar and another that takes advantage of the
decoder. Our experimental setup is described in Section 6, and results are presented
in Section 7, where we analyze not only the effectiveness but also the efficiency of our
techniques. We conclude by discussing limitations and future work.

2. A PRIMER ON STATISTICAL MACHINE TRANSLATION

In modern statistical machine translation, the translation process is modeled as a noisy
channel: we assume some sentence t was generated in the target language but then
got “garbled” into the source language, so that the task is to recover the most probable
sentence t∗ that explains the source sentence s. The process consists of two components:
(i) generation of the target-language sentence, that is, P(t), and (ii) translation from
target to source language, that is, P(s|t). By Bayes’ Theorem,

P(t|s) = P(s|t)P(t)
P(s)

. (1)

Given s, we want to compare possible translation hypotheses, and thus we can safely
drop the denominator P(s). The remaining two processes P(s|t) and P(t) are usually
modeled separately, commonly referred to as the translation model and language model,
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Fig. 1. Overview of a modern statistical machine translation system.

respectively. Typically, they are combined into a log-linear model:

log P(t|s) = log[PTM(s|t) × PLM(t)] (2)
= log PTM(s|t) + log PLM(t). (3)

In this work, we leave aside research issues in language modeling and simply adopted
best practices. Language modeling in the retrieval context is less interesting for two
reasons: (i) we are translating queries, which are linguistically-impoverished compared
to typical natural language sentences, and (ii) proper language modeling of queries
requires access to query logs, which are difficult for academic researchers to obtain.

Training a translation model refers to the process of learning the parameters of PTM
in Equation (2). In most modern statistical MT systems, this involves word alignment
and grammar extraction. Once parameters of the translation and language models are
learned, one can apply a decoder to search for the best target-language text. Figure 1
illustrates such an architecture. A brief overview of each component is provided next,
but for more details, we refer the reader to a survey by Lopez [2008] or a textbook by
Koehn [2010].

2.1. Word Alignment

Most statistical models of translation descend from the IBM Models [Brown et al. 1990,
1993], which encode translation processes at the word level. These models assume a
mapping between source and target words (i.e., a word alignment) that explains how
words are transformed from the target language into the source language.

The word alignment process can be described probabilistically in terms of possible
mappings between source and target words:

PTM(s|t) =
∑

alignment a

P(s, a|t) =
∑

alignment a

P(a|t)P(s|t, a). (4)

Each of the IBM Models 1–4 describes such a statistical model, differing only in the
independence assumptions each makes. For instance, IBM Model 1 naı̈vely assumes
that (i) each possible alignment is equally probable for a given target sentence, and
(ii) each source word is determined only by the target word it is aligned to. Given a
target sentence t, the generative story is as follows.
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(1) Pick the number of source words to generate m with constant probability.
(2) Pick some alignment between s = s1 . . . sm and t = t1 . . . tl from a uniform distribu-

tion. Each alignment has equal probability: 1
(l+1)m .

(3) Generate each source word sj with probability P(si|ta(i)).

Thus, under IBM Model 1, the alignment probability is the following:

PModel1(s, a|t) = C
1

(l + 1)m

m∏
i=1

P(si|ta(i)). (5)

The parameters of IBM models can be learned in an unsupervised fashion by applying
the expectation-maximization algorithm (EM) [Dempster et al. 1977] on a sentence-
aligned bilingual corpus (also referred to as a parallel corpus or bitext in MT parlance).

While illustrative, IBM Model 1 performs poorly in practice and is used today only
as an initialization step to more sophisticated models, for example, based on hidden
Markov models (HMMs). Nevertheless, all word alignment models are similar in that
they induce word translation probabilities in a completely unsupervised manner from
bilingual text. These translation probabilities can be used as a bilingual dictionary for
query translation in CLIR—this word-based approach provides a baseline, which we
describe in Section 4.

2.2. Grammar Extraction

From word alignments, we can obtain word translation probabilities. However, us-
ing these distributions directly for machine translation yields poor-quality output, so
modern MT systems use word alignments to build richer translation models. One suc-
cessful approach has been to model “phrases,” which are simply contiguous sequences
of words (and do not necessarily have any linguistic basis). In this work, we focus on
two popular phrase-based MT models, a flat phrase-based MT (PBMT) model [Koehn
et al. 2003; Och and Ney 2004; Marcu and Wong 2002] and a hierarchical phrased-
based model [Chiang 2005, 2007]. We selected these two methods for a few reasons: (i)
they represent mature and well-understood techniques that form the foundation of the
current state of the art (and in their basic forms still provide competitive translation
quality); (ii) both are implemented in open-source tools that facilitate rapid experimen-
tation and reproduction of results; (iii) phrases represent textual units that are easy
to work with from a retrieval perspective.

In both flat and hierarchical phrase-based MT, the translation model is represented
as a translation grammar, which can be extracted by inducing all bilingual phrase
pairs that are consistent with word alignments [Och et al. 1999]. In a phrase-based
MT system, the grammar consists of rules of the following form:

rule r : α | | β | | A | | �(r).

Rule r states that source-language text α can be translated into target-language text
β, with an associated likelihood value �(r), an unnormalized estimate of the event
probability.1 We call α the left-hand side (LHS) of the rule, and β the right-hand
side (RHS) of the rule. A represents the word alignments, which is a many-to-many
mapping between words on the LHS and RHS of the rule.

In flat phrase-based MT systems, the LHS and RHS of a rule contain only text, or
multiword expressions known as phrases. Thus, such rules are also referred to as phrase
pairs, and the set of rules in the translation model form the phrase translation table.

1In practice, there are usually additional features.
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Fig. 2. A toy hierarchical grammar with four rules (top) and an illustration of how maternal leave in Europe
is translated using these rules (bottom).

To avoid confusion and to emphasize the contrast with the hierarchical phrase-based
approach (see the following), we refer to such a translation grammar as a flat grammar.

In hierarchical phrase-based MT systems, rules take a slightly different form:

hierarchical rule r : [X] | | α | | β | | A | | �(r).

This indicates that the context-free expansion X → α in the source language occurs
synchronously with X → β in the target language. These rules form a formal model of
translation based on synchronous context-free grammars (SCFGs). This hierarchical
grammar differs from a flat grammar in terms of rule expressivity: the LHS and RHS
are allowed to contain one or more non-terminals, each acting as a variable that can be
expanded into other expressions using other rules. In other words, the rules describe
a context-free expansion on both source and target sides, carried out recursively to
generate translation hypotheses.

Consider four rules from a toy hierarchical grammar in Figure 2. The first two rules
are special rules without any lexical items, stating that there is one sentential form S
consisting of a single variable. In the third and fourth rules, we see the structure of the
English phrase and how it is translated into French. In R3, leave is aligned to congé, in
is aligned to en, and europe is aligned to europe. In this case, the likelihood of the rule
is 1.0; in other words, whenever the LHS is observed in English, we are very confident
that the corresponding RHS should be generated in French. The bottom of Figure 2
shows the derivation tree that synchronously parses and translates the source text into
congé de maternité en europe using the grammar. The left and right trees correspond to
the parse of the source text and its translation, respectively. Each line between symbols
in the tree indicates a rule application, annotated with the corresponding rule ID.

Having variables in the rules provides a representational advantage for hierarchical
grammars in terms of conciseness and expressivity. For example, this grammar can
accommodate the translation of paternal leave in Europe by adding the rule R5 for the
lexical translation.

R5 : [X] | | paternal | | paternité | | 0-0 | | 0.72
We can apply R5 to produce congé de paternité en europe as the translation. This
derivation is exactly the same as the derivation in Figure 2, except that maternal is
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replaced with paternal on the English side (and corresponding changes on the French
side). In this case, rules R4 and R5 provide a way to lexicalize the transformation
represented in R3. In order to obtain a corresponding flat grammar, we would need
to include a separate rule to specify each lexicalized form of every transformation,
resulting in a much larger translation model.

Another benefit of hierarchical grammars is higher expressivity through “gaps,”
encoded in non-terminal variables such as [X] in R3. This allows an arbitrarily long
part of the sentence to be “moved” from the left of the sentence in English to the middle
of the sentence in French. Using such rules, a hierarchical grammar can capture distant
dependencies in a sentence that cannot be easily expressed in flat grammars.

Although the complete translation grammars for real-world MT systems can be quite
large, for any given input sentence, only a modest number of rules are applicable—
modern systems take advantage of this property to increase decoding speed (see next
section) and reduce memory footprint. For flat grammars, a binarized representation
can be used to filter rules with respect to an input sentence [Koehn et al. 2007].
For hierarchical grammars, a suffix array built over the parallel text can be used to
efficiently extract all applicable rules given an input sentence [Lopez 2007]. For CLIR,
we can take advantage of these techniques to learn translation probabilities at query
time, using what we call the grammar-based approach—this is detailed in Section 5.1.

2.3. Decoding

The third major component of the MT pipeline is the decoder, which performs a search
through the hypothesis space to find top-scoring translations. By combining the trans-
lation and language models, the decoder attempts to ensure (i) that the hypothesis
represents an accurate translation and (ii) that the hypothesis represents fluent target-
language text.

In statistical MT, each sequence of rules that covers the input is called a derivation D
and produces a translation candidate t, typically scored by a log-linear combination of
features. One can include arbitrarily many features, but two are essential: the transla-
tion model score TM(t, D|s), which is the product of rule likelihood values and indicates
how well the candidate preserves the original meaning, and the language model score
LM(t), which captures the fluency of the translation. To control computational com-
plexity, most decoders search for the most probable derivation (as opposed to the most
probable string):

t(1) = arg max
t

[
max

D∈D(s,t)
�(t, D|s)

]
(6)

= arg max
t

[
max

D∈D(s,t)
log �(t, D|s)

]
(7)

= arg max
t

[
max

D∈D(s,t)
(log TM(t, D|s) + log LM(t))

]
(8)

= arg max
t

[
max

D∈D(s,t)

∑
r∈D

log �(r) + log LM(t)

]
, (9)

where D(s, t) is the set of possible derivations that generate the pair (s, t). The sequence
of four rules that translate the example query in Figure 2 forms one such derivation.

For CLIR, we can take advantage of the n-best hypotheses generated during
decoding—this is referred to as the decoder-based approach and will be detailed in
Section 5.2.
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3. RELATED WORK

3.1. Query Translation and Context Recovery

The earliest approaches to query translation for cross-language information retrieval
used machine-readable bilingual dictionaries [Hull and Grefenstette 1996; Ballesteros
and Croft 1996]. For words that have multiple translations, these approaches either
used all entries or restricted the translation to the first entry (assuming entries are
sorted by decreasing frequency). The first approach suffers from noisy translation can-
didates and over-representation of highly polysemous query terms, whereas the second
leaves out many good alternative translations. Generally speaking, these techniques
achieve 40–60% of monolingual IR effectiveness. Xu and Weischedel [2005] showed
that this can be increased to 70–80% simply by weighting each translation by 1/n,
where n is the entry order in the dictionary.

Pirkola [1998] was the first to separate the estimation of term frequency (tf) and
document frequency (df) for query terms in CLIR, introducing the notion of “structured
queries.” In his work, the tf and df of each query term w is computed from its translation
alternatives. The idea is to consider each translation as a synonym, so that the tf of w
is the sum of the tf of its translations and the df is the cardinality of the union of docu-
ments its translations occur in. In a slight variant introduced by Kwok [1999], df(w) is
computed as the maximum of the df values of its translations, mainly to simplify im-
plementation. Both of these approaches have the same weakness: since all translation
alternatives are treated equally, any rare translation that is a common word will dom-
inate the df and disproportionately influence the overall scoring behavior. The model
of Darwish and Oard [2003], which we detail in Section 4, overcomes this weakness.

There is a rich literature on post-processing translation alternatives to discard
infelicitous candidates based on different notions of context. Many proposed methods
are based on cohesion between the translated terms: alternatives include pointwise
mutual information [Gao et al. 2001], dice similarity [Adriani and Rijsbergen 2000],
and mutual information [Liu et al. 2005]. These approaches select terms greedily (i.e.,
pick the translation of the first word that maximizes cohesion, then move to the second
word, etc.), but Seo et al. [2005] showed further improvements when all possibilities
are considered.

Explicitly modeling term dependencies has been shown to increase effectiveness
in monolingual retrieval [Gao et al. 2004; Metzler and Croft 2005], but extending
these ideas to the cross-language case has proven not to be as straightforward as
one might expect. Cao et al. [2006] attempted this by modeling the translation space
as a graph structure and showed that a random walk algorithm can be applied to
compute probabilities of different paths. Their approach considered synonyms for
query expansion as well as translations. Wu and He [2010] also integrated expansion
and translation using an MT-based translation model.

Another way to incorporate dependencies between query terms is to consider
multiword expressions (i.e., “phrases”) in order to limit polysemy effects [Adriani and
Rijsbergen; Arampatzis et al. 1998; Ballesteros and Croft 1997; Chen 2000; Meng et al.
2004]. The common approach is to identify possible phrases in the query and search for
translations in dictionaries with multiword expressions. Such dictionaries are not easy
to build from scratch, so researchers have relied on existing resources. One challenge
with this approach is low coverage: for example, Chen [2000] reported that only 45 of
367 identified phrases were in their dictionary. Building a domain-specific dictionary
might address this issue, but even for matching phrases, authors reported that unreli-
able translations hurt overall effectiveness, mainly due to the lack of contextual clues
to disambiguate among many translation alternatives. We argue that phrase-based
MT systems possess strengths that are missing from these earlier approaches.
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3.2. Noisy Channel Models

Application of the noisy channel model to information retrieval has a long history.
For monolingual retrieval, an initial formulation can be traced back to Ponte and
Croft’s [1998] language modeling approach. A subsequent extension by Berger and
Lafferty [1999] explicitly views retrieval as “statistical translation”: it is imagined that
a noisy channel “corrupted” documents into the query, and thus the retrieval task is to
recover the (relevant) documents that “generated” the query.

Applying these ideas to the cross-language case was a natural extension: Federico
and Bertoldi [2002] presented an approach based on hidden Markov models (HMMs),
which models sequential dependencies using a bigram language model for the transi-
tion probabilities. Kraaij et al. [2003] presented two probabilistic models of how text
gets “corrupted” in the retrieval process, originating from the document in one case
and the query in the other. Each model has components that correspond to trans-
lation and language modeling. Both approaches exhibit improvements over earlier
dictionary-based methods, reporting mean average precision of around 90% of mono-
lingual comparison conditions. Others have presented similar approaches with differ-
ent smoothing techniques, also yielding strong empirical results [Xu et al. 2001; Xu
and Weischedel 2005]. In general, the translation models used in these techniques are
less sophisticated than the phrase-based and hierarchical models in our work. Finally,
another related thread of work explores relevance models in the language modeling
framework, which was applied to both monolingual [Lavrenko and Croft 2001] and
cross-language [Lavrenko et al. 2002] retrieval.

3.3. Document Translation and Language-Independent Approaches

Document translation, which involves translating the collection to be searched into
the query language, also has a long history. One of the first attempts was by Oard
and Hackett [1997], followed by the introduction of a technique for faster document
translation [McCarley and Roukos 1998]. Researchers have also compared query and
document translation, concluding that while the differences between the approaches
were negligible, combining both into a hybrid approach yielded significant improve-
ments [Oard 1998; McCarley 1999]. These results, however, depended on the specifics
of the translation technique, the language pair, as well as the quality of the underlying
translation system. With different setups, later papers contradicted earlier conclusions,
instead claiming that query translation outperforms document translation [Hayurani
et al. 2007], and that there is no benefit from translating in both directions [Kishida
and Kando 2006].

In addition to query translation and document translation, there have also been
attempts to map both into a language-independent semantic space, modeled as la-
tent variables [Littman et al. 1998]. The major drawback of these approaches is the
computationally-intensive nature of the underlying transformations (e.g., latent se-
mantic indexing [Furnas et al. 1988]). The other downside is that the transformations
are often difficult to understand and interpret. One attempt to address both issues is
the work of Wang and Oard [2006], which leverages bidirectional translations to match
the meaning of queries and documents, where “meanings” are represented by synsets
in WordNet.

3.4. Integration of Machine Translation and Information Retrieval

With the development of sophisticated statistical translation models, modern MT sys-
tems construct rich internal representations that typically include translation alterna-
tives encoded in lattices. However, MT-based CLIR approaches often still use one-best
results, since it is more convenient to treat MT systems as black boxes. Nevertheless,
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Magdy and Jones [2011] showed that it is beneficial to adapt MT specially for query
translation. The authors reported improvements in retrieval effectiveness by simply
applying standard IR text preprocessing prior to MT training. More recently, Nikoulina
et al. [2012] built an MT model tailored to query translation by (i) tuning model weights
on a set of queries and reference translations, and (ii) reranking the top-n translations
to maximize effectiveness on a held-out query set. While improvements were more
substantial using the second method, an interesting finding was the low correlation
between translation and retrieval quality. Ma et al. [2012] also exploited n-best out-
put from an MT system, using word alignments to produce a separate query from
each translation. These translations were combined post-retrieval without using the
MT probabilities, which is complementary to the pre-retrieval evidence combination
techniques we propose. The authors reported improvements over one-best MT, which
is consistent with our argument that diversity is beneficial in query translation. In
speech retrieval, combining n-best derivations is also routinely used [Olsson and Oard
2009].

For a summary of trends in CLIR research, we refer the reader to a book by Nie [2010],
in which he points out the need for better integration of MT and IR, with some ideas of
how this can be accomplished. Our work can be seen as a realization of this integration.

4. CONTEXT-INDEPENDENT QUERY TRANSLATION

As a baseline, we consider a CLIR approach based on translation probabilities de-
rived automatically from word alignments (see Section 2.1), which can be exploited for
retrieval using the technique of Darwish and Oard [2003] for “projecting” vector repre-
sentations of text from one language into another. Using this technique, we represent
a source-language query s = s1, s2, . . . in the target language (i.e., the document lan-
guage) as a probabilistic structured query (PSQ), where each word sj is represented by
its translations in the target language, weighted by the translation probability P(ti|sj).

In order to build a translation probability distribution suitable for CLIR, we need to
perform some “cleaning” on the raw output of the word aligner. For each source language
term sj , we sort its translations by decreasing probability into a list [ti1 , ti2 , . . .]. In sorted
order, these terms are added to a new probability distribution, called Pword, until (i) the
probability falls below a threshold L, or (ii) the cumulative sum of probabilities reaches
C, or (iii) the number of translations in the distribution exceeds H. Finally, to generate
a valid probability distribution, we renormalize the probabilities of the selected terms:

Pword(tik|sj) =
{

0 if filter(k, [ti1 , . . . , tik])
1
ξ j

P(tik|sj) otherwise,
(10)

filter(k, [ti1, . . . , tik]) = (k > H) ∨ (P(tik|sj) ≤ L) ∨
(

k−1∑
l=1

P(til |sj)

)
> C, (11)

where ξ j is the normalization factor, given by the sum of all the probabilities for each
of the alternative translations (from the target-language vocabulary Vt) added to the
distribution:

ξ j =
∑

tik∈Vt

¬filter(k,[ti1 ,...,tik ])

P(tik|sj). (12)

Most retrieval models require term statistics such as term frequency (tf) and docu-
ment frequency (df) to compute query-document scores. In CLIR, these statistics are
available for target-language terms only. To address this problem, Darwish and Oard
introduced a mechanism to translate these term statistics into the source-language
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Fig. 3. The translation of the query maternal leave in Europe using Pword.

vocabulary space using term translation probabilities Pword. In this approach, the score
of document d, given source query s, is computed as follows:

Score(d|s) =
∑
sj∈s

BM25(tf(sj, d), df(sj)), (13)

tf(sj, d) =
∑

ti

tf(ti, d)Pword(ti|sj), (14)

df(sj) =
∑

ti

df(ti)Pword(ti|sj). (15)

As shown, we use the Okapi BM25 term weighting function [Robertson et al. 1994]
due to its effectiveness in a wide range of empirical evaluations, but any other weighting
function can be substituted into Equation (13).

Example. Using an Indri-like notation [Metzler and Croft 2004], Figure 3 shows
how the translation of the English query maternal leave in Europe is represented as
a PSQ for target language French. We assume English and French words have been
stemmed and stopwords removed. The #comb operator corresponds to the sum operation
in Equation (13), and the #wsyn operator represents the weighted sum in Equations (14)
and (15). Each of the three #wsyn clauses represents the translation of a query term:
maternal, leave, and Europe. Within each #wsyn clause, translation alternatives are
weighted according to the Pword distribution. Since the translation distribution for the
source term leave is unaware of the context maternal leave, candidates that occur most
frequently in the training text (from which the alignments were induced), such as
laisser (Eng. let go, allow) and quitter (Eng. quit), are assigned higher weights than
more appropriate candidates, such as congé (Eng. vacation, day off). Due to the many
senses of leave, there are ten translation candidates, some of which are omitted for
brevity.

Discussion. One drawback of this query translation approach (hereafter referred to
as “word-based”) is its context-independent nature, since the model assumes that the
translation of query terms is independent. In contrast, the context-sensitive models in
the next section consider context when producing translations. This information allows
a model to disambiguate translation alternatives and discard infelicitous candidates.

On the other hand, it may not be possible to disambiguate translation alternatives
in some cases due to sense ambiguity in the original query that cannot be resolved
given the available context. Furthermore, since information retrieval is fundamentally
about bridging the mismatch between query terms that an information seeker uses
and document terms that a writer selects (even if they are in different languages),
multiple translations are desirable to increase conceptual coverage. Hence, the ability
to represent multiple plausible translations for a single meaning in a probabilistic
manner can be beneficial—in contrast to sense ambiguity, we might refer to this as
retaining diversity via “representational ambiguity.” We argue that translation models
should be ambiguity-preserving in both of the ways previously discussed. However, we
should take advantage of contextual information to prune or down-weight translations
that are less plausible—which means that the amount of disambiguation must be
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carefully balanced. Experiments show that the context-sensitive methods discussed
in the next section are able to achieve this balance and are more effective than the
word-based approach.

5. CONTEXT-SENSITIVE QUERY TRANSLATION

In this section, we present two ways to exploit the internal representations of a modern
statistical MT system for query translation in CLIR. The grammar-based approach ex-
tracts translation probabilities from either flat or hierarchical grammars. The decoder-
based approach extracts translation probabilities from n-best translation hypotheses
from the decoder. The grammar-based approach exploits the translation model, while
the decoder-based approach exploits both the translation and language models. Finally,
different sources of evidence can be combined into an interpolated model. To our knowl-
edge, these techniques are novel and represent our contribution to query translation
approaches to CLIR.

5.1. The Grammar-Based Approach: Learning Probabilities from the Translation Model

Given an input sentence to translate, a modern statistical MT system extracts a subset
of the grammar that is applicable to the input. Each translation rule describes one
possible way of translating a portion of the query (along with associated features and
likelihoods). In other words, the grammar encapsulates all the possible ways that the
translation model can be applied to the input text. Since the rules contain multiword
expressions, they capture contextual cues that can be exploited for query translation.

We propose the following method to exploit either a flat or hierarchical grammar
for query translation: Given a grammar G and a query s, we first obtain the subset of
rules G(s) for which the source side pattern matches s by using either the suffix array
extraction or filtering techniques described in Section 2.2. Once G(s) is obtained, for
each rule r in G(s), we identify each source word sj on the LHS, ignoring any non-
terminals. From the word alignment information included in the rule, we can find all
target words that sj is aligned to. By processing all the rules to accumulate likelihoods,
we can construct translation probabilities for each source word (more details to follow).
This procedure can be applied to both flat and hierarchical grammars.

When sj is aligned to multiple target words in a rule, it is not obvious how to dis-
tribute the probability mass. One obvious approach is to treat each alignment as an
independent event with the same probability (equal to the likelihood of rule r): we call
this the one-to-one heuristic. This heuristic ignores the fact that target words aligned
to s are not usually independent. To illustrate, consider the examples in Figure 4,
which shows three grammar rules on the left and, for each, three different heuristics
for learning translation pairs. In the first example, the English word after is aligned to
two French words après, avoir (Eng. after, have), forming the phrase après avoir, which
is a valid translation. However, according to the one-to-one heuristic, avoir would be
incorrectly considered a valid translation of after. Similarly, in the second example,
the English word brand is aligned to three French words marque, de, fabrique (Eng.
brand, of, factory), forming the phrase marque de fabrique (Eng. trademark). Even if
de is discarded as a stopword, the one-to-one heuristic would extract the translation
pair (brand, fabrique) incorrectly. Note that in the third example, we do not learn the
pair (anti, aux) because the latter is a stopword in French.

An alternative is to ignore these cases altogether and assume that good translation
pairs will appear in other rules, so that discarding multiword alignments will not hurt:
we call this the one-to-none heuristic. In the third example, the association between
drug and médic is still learned, since drug is aligned to a single target word. All other
possible associations are ignored with the one-to-none heuristic.
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Fig. 4. Examples illustrating the three different heuristics for handling multiple word alignments when
extracting translation pairs from grammar rules (one-to-one, one-to-none, and one-to-many). Hierarchical
grammar rules are shown here but the heuristics apply in the same way to flat grammars.

A third approach is to combine the target words into a multiword expression. In the
first two examples, we learn the translation of after as après avoir and brand as marque
de fabrique. In contrast to the other two heuristics, this creates multiword translations,
which are realized as phrase queries at retrieval time.2 We combine the target words if
they are consecutive or if they are separated by one or more stopwords. The latter case
applies in the second example: marque and fabrique are not consecutive, but the only
intervening word de is a stopword in French. In the third example, we do not learn
an association between anti and aux médic anti, because the non-aligned middle word
médic is not a stopword. We call this approach one-to-many, and compare the three
heuristics experimentally.

After processing all rules in the manner just described, (using one of the three align-
ment heuristics), we can construct a distribution for each query term by renormalizing
the likelihood scores. We call this distribution PPBMT if the underlying rules are from
a flat grammar or PSCFG if the underlying rules are from a hierarchical grammar.
Formally, this is described as follows.

PSCFG/PBMT(ti|sj) = 1
ψ

∑
r∈G(s)

sj↔ti in r

�(r) (16)

tf(sj, d) =
∑

{ti |sj↔ti∈G(s)}
tf(ti, D)PSCFG/PBMT(ti|sj) (17)

df(sj) =
∑

{ti |sj↔ti∈G(s)}
df(ti)PSCFG/PBMT(ti|sj), (18)

where ψ is the normalization factor, and sj ↔ ti represents an alignment between words
sj and ti. Mapping tf and df statistics from source to target vocabulary is achieved by
replacing Pword with PSCFG/PBMT in Equations (14) and (15).

Example. Let us compute PSCFG for the second term in our example query, maternal
leave in Europe (which is preprocessed into matern leav europ). In Figure 5, we show
the (abbreviated) set of hierarchical rules that contain the word leav extracted from the
translation model and also how the distributions are computed with each alignment
heuristic.

2At query time, stopwords in phrase queries are ignored since we remove stopwords prior to indexing.
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Fig. 5. Sample hierarchical rules that contain the term leav and the computation of PSCFG using different
alignment heuristics.

In order to construct a translation distribution for the term leav, we iterate over
rules and accumulate likelihood values for each translation alternative. The candidate
in the first rule is cong (Eng. vacation, day off), thus we accumulate a value of 0.38 for
the distribution PSCFG(cong|leav). Similarly, we process the remaining rules and add
values for two other translation candidates: laiss (Eng. let go, allow) and quitt (Eng.
quit). In the final rule, the approach depends on the heuristic choice: If we apply the
one-to-one strategy, we add 0.01 for each candidate, quitt and assembl (cet is a stopword
in French). In this case, the computation of the final distribution is shown right below
the grammar in Figure 5. If the one-to-many heuristic is applied, we add 0.01 to the
multiword expression quitt cet assembl, yielding a different computation, shown in the
middle of Figure 5. Finally, with the one-to-none heuristic, we ignore the last rule,
producing the distribution shown in the bottom of Figure 5.

In Figure 6, we show the structured query that captures translation probabilities as
learned from the complete translation grammar using a hierarchical MT system and
the one-to-one alignment heuristic. The query looks similar using a flat grammar and
therefore is not shown. Note that the probabilities here do not match the probabilities
in Figure 5 since they were computed from the entire translation grammar (and not
just a toy example).
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Fig. 6. The translation of the query maternal leave in Europe using PSCFG.

Discussion. Pword and PSCFG/PBMT both capture the probability of a target-language
word given a source-language word, but differ in how the probabilities are computed.
For both approaches, we start from word alignments. Pword can be directly computed
from the word alignments, but to compute PSCFG/PBMT, we leverage the MT system’s
translation model (flat or hierarchical translation grammar) and filter the grammar
based on the input query. Thus, PSCFG/PBMT takes context into account: instead of
an unconditioned word probability distribution, we generate a distribution that is
conditioned on multiword expressions that each source word appears in.

The context-sensitive nature of the grammar-based approach produces a structured
query that is different from the one derived from Pword. The distribution of leave in
Figure 6 shifts toward the more appropriate translation congé by incorporating context;
this is apparent if we compare against the context-independent distribution in Figure 3.
Moreover, the number of translation candidates decreases from ten to five with the
grammar-based approach.

Note that once we perform grammar extraction, the rules are processed in exactly
the same way; non-terminals in the hierarchical rules are ignored. This naturally begs
the question: What’s the difference between flat and hierarchical grammars? These
two types of grammars represent different trade-offs in the design of MT systems.
Flat grammars are simpler and less expressive, while hierarchical grammars are more
expressive since they are able to model long-distance dependencies. In terms of transla-
tion quality on standard MT tasks, systems using hierarchical grammars are generally
better, but details vary by language, genre, amount of training data, etc. Since appli-
cation of hierarchical grammars in decoding requires synchronous parsing, they are
usually slower [Lopez 2008]. On the other hand, because flat grammars are less ex-
pressive and more verbose, the translation models usually contain more rules; this
verbosity often leads to more noisy translation alternatives.

The trade-offs between flat and hierarchical grammars are usually discussed in
terms of translation tasks, not cross-language information retrieval, and thus their
impact for retrieval applications remains an open question. For example, is the greater
expressivity offered by hierarchical grammars useful for translating queries, given
that most queries are short? Or, can simpler flat grammars work just as well in terms
of retrieval effectiveness? Does the verbosity of flat grammars have any impact on
efficiency? In an MT system using flat grammars, the decoder may ignore noisy trans-
lations since it is guided by a language model, but here we are using the rules directly,
which results in complex structured queries. We explore these and related questions in
our experiments.

5.2. The Decoder-Based Approach: Learning Probabilities from Multiple Derivations

In the grammar-based approach to query translation, we take advantage of context that
is encapsulated in the translation grammar. A natural next step would be to exploit
the language model as well and work with representations that are generated as part
of the decoding process. We refer to this as the decoder-based approach.

The most obvious way to use the MT decoder for CLIR is to replace the source
query with its most probable translation. In this one-best query translation approach,
Equations (13)–(15) simplify to the following, where t(1)

i is the ith word of the best
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translation of s:

Score(d|s) =
m∑

i=1

BM25
(
tf

(
t(1)
i , d

)
, df

(
t(1)
i

))
. (19)

Since modern statistical MT systems generate high-quality translations for many
language pairs, this one-best strategy works reasonably well for retrieval and provides
a competitive baseline. However, in the context of our ongoing discussion, we argue
that this approach “collapses” too much ambiguity, resulting in a brittle system. In
cases where the translation is incorrect or even “slightly off” (i.e., an acceptable but
awkward phrasing), effectiveness can suffer substantially. Furthermore, as we have
discussed, since the same concept can be expressed using multiple terms, it would be
desirable to retain representational diversity in our queries.

We can address this issue by considering the n-best hypotheses. Decoders produce
many candidate translations in the process of computing Equation (6); most of the time,
all but the best hypothesis are discarded. However, by “opening up” the MT system, we
can take advantage of the n most probable candidates.

To learn term translation probabilities from the n-best translations, we start by pre-
processing the source query s and each candidate translation t(k), k = 1 . . . n. Here, t(k)

denotes the kth most likely translation of s according to the log-linear MT model. For
each source word sj , we use the derivation information to determine which grammar
rules were used to produce t(k) and the word alignments within the rules to determine
which target terms are associated with sj in the derivation. By doing this for each
translation candidate t(k), we construct a probability distribution of possible transla-
tions of sj based on the n hypotheses. Specifically, if source word sj is aligned to (i.e.,
translated as) ti in the kth best translation, the value �(t(k)|s) is added to its probability
mass. Similar to PSCFG/PBMT, we apply one of the three heuristics when a source word
is aligned to multiple target words in a rule. The following specifies how this new
probability distribution (called Pnbest) is constructed:

Pnbest(ti|sj) = 1
ϕ

n∑
k=1

sj↔ti in t(k)

�(t(k)|s), (20)

tf(sj, d) =
∑

ti

tf(ti, d)Pnbest(ti|sj), (21)

df(sj) =
∑

ti

df(ti)Pnbest(ti|sj), (22)

where ϕ is the normalization factor. If a source word is translated consistently into the
same target word in all n hypotheses, it will have a single translation with a probability
of 1.0.

Example. Construction of Pnbest is similar to PSCFG/PBMT, but we consider only rules
that participate in the derivations of the top n translations. Figure 7 shows the result-
ing structured query for our running example using Pnbest. In this example, leave is
consistently translated to congé in all top n hypotheses, so it receives a weight of 1.0 in
the #wsyn clause (and similarly for europe).

Discussion. The grammar-based and decoder-based approaches take advantage of
different stages in the standard MT pipeline. Whereas PPBMT/SCFG exploits only the
translation model to compute translation probabilities (either flat or hierarchical
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Fig. 7. The translation of the query maternal leave in Europe using Pnbest (n = 10).

grammars), Pnbest additionally benefits from the language model, which guides the
decoder to hypotheses that are more fluent in the target language. In the context of our
ongoing discussion, the decoder-based approach applies more context to disambiguate
translation alternatives, but correspondingly sacrifices diversity.

However, it remains an open question whether using a language model for query
translation is beneficial. Most often, language models are trained on well-formed text,
typically from sources such as newswire articles. Thus, the decoder is guided to hy-
potheses that “look like” newswire text, which is different in nature from queries. Of
course, this issue could be addressed if we built language models from target language
queries, but this requires query logs in foreign languages, which are difficult to obtain
for academic researchers. Also, bringing language models to bear for query translation
has efficiency implications in terms of the time needed for the decoder to explore the
hypothesis space and a larger memory footprint for loading the language model. These
issues are worth considering as part of an overall evaluation.

Another implication of learning translation probabilities after the decoding process
is the need for MT system tuning: this is a nontrivial and time-intensive procedure.
Typically, system tuning is accomplished using a validation dataset that is similar in
nature to the types of input that the system will encounter. Since we did not have
access to appropriate query logs (and their translations), tuning was performed using
standard data (from the newswire domain). To our knowledge, other than a recent
paper by Nikoulina et al. [2012], tuning MT systems specifically for CLIR has received
little attention by researchers.

We conclude with a subtle point about MT decoders: to preserve translation diversity,
we take advantage of the n-best hypotheses as opposed to the single best translation.
However, the decoder scores most likely derivations, that is, the application of rules that
spans the input to generate the output—not the most likely surface strings (i.e., text).
In fact, many derivations share the same surface string. This lack of textual variety is a
known issue, called “spurious ambiguity” in the MT literature, and it occurs in both flat
and hierarchical phrase-based MT systems. For instance, according to Li et al. [2009], a
string has an average of 115 distinct derivations in Chiang’s hierarchical system [2007].
Researchers have proposed several ways to cope with this issue, and integrating some
of these ideas into our CLIR approach might be worthwhile to explore in the future.

Our running example of maternal leave in Europe suffers from this spurious am-
biguity phenomenon, since two of the three query terms are consistently translated
in all top-10 MT output. To provide the reader with a better sense of the diversity
that is captured in n-best output, we show the top-10 translations of the query earth-
quakes in Mexico City in Figure 8. There are two common ways to translate earthquake
into French: tremblement de terre and séisme; these alternative are reflected in the
translation output.

5.3. Combining Sources of Evidence

The three approaches that we have discussed for query translation (word-based,
grammar-based, and decoder-based) represent different trade-offs in applying context
for disambiguation and preserving translation diversity. It seems natural that we
would want to combine multiple sources of evidence, and a simple way to accomplish
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Fig. 8. The 10 best translations (and their respective probabilities) for the query earthquakes in Mexico City
by our English-French MT system.

Table I. Summary of the Data Used in Our Evaluations

Collection MT Training data
Language Source Size (docs) # topics Source Size (sent)

Arabic TREC 2002 383,872 50 GALE 3.4m
Chinese NTCIR-8 388,589 73 FBIS 0.3m
French CLEF 2006 177,452 50 Europarl 2.2m

this would be via a linear interpolation of the three probability distributions:

Pc(ti|sj ; λ1, λ2) = λ1 Pnbest(ti|sj)
+ λ2 PSCFG/PBMT(ti|sj) (23)
+ (1 − λ1 − λ2)Pword(ti|sj),

where λ1 and λ2 define how much weight is assigned to the decoder-based and grammar-
based models, respectively. Replacing Pword with Pc in Equations (14) and (15) gives us
the document scoring formula for the interpolated model.

6. EVALUATION SETUP

We evaluated the query translation approaches described in this article using CLIR
test collections for three languages: TREC 2002 English-Arabic CLIR, NTCIR-8
English-Chinese Advanced Cross-Lingual Information Access (ACLIA), and CLEF
2006 English-French CLIR. In all three cases, the source language is English and
we are searching for documents in the foreign language. For the Arabic and French col-
lections, we used title queries because they are most representative of the short queries
that users pose to search engines. Queries in the NTCIR-8 ACLIA test collection are in
the form of well-formed questions, but for consistency, we treated them as bag-of-words
queries with no special processing. Statistics for each collection are summarized in
Table I.

Bilingual training data used for translation modeling were as follows:

—Arabic, 3.4 million aligned sentence pairs from the DARPA GALE evaluation [Olive
et al. 2011], which consists of NIST and LDC releases;

—Chinese, 302,996 aligned sentence pairs from the Foreign Broadcast Information
Service (FBIS) corpus, which is a collection of radio newscasts, provided by LDC
(catalog number LDC2003E14);3

—French, 2.2 million aligned sentence pairs from the Europarl corpus (version 7) built
from the proceedings of the European Parliament.4

3http://projects.ldc.upenn.edu/TIDES/mt2003.html.
4http://www.statmt.org/europarl.
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From these data, word alignments were learned with GIZA++ [Och and Ney 2003],
using five Model 1 and five HMM iterations. Flat grammars were extracted using
Moses [Koehn et al. 2007] and hierarchical grammars were extracted using cdec [Dyer
et al. 2010], which implements the suffix array approach of Lopez [2007] for grammar
extraction.

To complete the components required for translation, a 3-gram language model was
trained from the non-English side of the training text for Chinese and Arabic using
the SRILM toolkit [Stolcke 2002]. For French, we trained a 5-gram LM from the mono-
lingual dataset provided for WMT-12. The Chinese collection was segmented using the
Stanford segmenter [Tseng et al. 2005]. English topics and the French collection were
tokenized using the OpenNLP tokenizer.5 Arabic was tokenized and stemmed using
Lucene.6 For English and French, we also lowercased text, stemmed words using the
Snowball stemmer, and removed stopwords.

We evaluated the following approaches to query translation, detailed in Sections 4
and 5:

—word-based, using Pword, as described by Equation (10);
—grammar-based, using PSCFG or PPBMT, as described by Equation (16);
—decoder-based, using Pnbest, as described by Equation (20);
—interpolated, using Pc, as described in Equation (23).

We fixed C = 0.95, L = 0.005, H = 15 for the word-based approach (based on previous
work) and n = 10 for the decoder-based approach. For the grammar-based, decoder-
based, and interpolated approaches, we compared the effectiveness of different heuris-
tics for multiple word alignments (one-to-one, one-to-many, one-to-none), as described
in Section 5.1. For the interpolated approach, in our initial experiments we performed
a grid search on the weights λ1 and λ2 in increments of 0.1, ranging from 0 to 1, and
report the setting with the highest effectiveness. Note that this represents the upper
bound on model effectiveness, since the weights are optimized on the same set of topics
used for testing. However, in a later set of experiments we report results with weights
learned from cross-validation. We employed this experimental setup because of the
small numbers of topics in our test collections.

All query translation approaches were implemented in our open-source Java re-
trieval toolkit called Ivory.7 Code and data (grammars, vocabularies, etc.) necessary to
replicate these experiments are available on the Web. As previously described, rank-
ing is performed using the Okapi BM25 scoring function [Robertson et al. 1994], with
parameters set to k1 = 1.2, b = 0.75. In all our experiments, we retrieved up to 1,000
hits for each topic and used mean average precision (MAP) as the evaluation metric.

7. EXPERIMENTAL RESULTS

Our experimental results are organized as follows: First, we provide a basic comparison
of different query translation approaches. Next, we examine in detail the impact of
parameter settings, followed by a per-topic analysis. Finally, we explore the efficiency
implications of various query translation techniques.

7.1. Comparison of Query Translation Approaches

The context-independent word-based approach of Darwish and Oard [2003] detailed in
Section 4 provides a strong baseline for query translation in CLIR. This model achieves
a MAP of 0.271 for Arabic, 0.150 for Chinese, and 0.262 for French. Direct comparisons

5http://opennlp.apache.org.
6http://lucene.apache.org.
7http://ivory.cc.
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Table II. Summary of MAP Values under Different Conditions for All Three CLIR Tasks

Arabic Chinese French

Method Heuristic SCFG PBMT SCFG PBMT SCFG PBMT

word - 0.271 0.150 0.262

grammar
1-to-M 0.293 0.274 0.182 0.156 0.297 0.264
1-to-0 0.302 0.273 0.188 0.167 0.292 0.262
1-to-1 0.282 0.266 0.170 0.151 0.288 0.257

1-best
1-to-M 0.242 0.246 0.156 0.150 0.276 0.297
1-to-0 0.250 0.230 0.155 0.146 0.235 0.242
1-to-1 0.249 0.249 0.155 0.155 0.276 0.297

10-best
1-to-M 0.255 0.264 0.159 0.169 0.307 0.289
1-to-0 0.248 0.249 0.159 0.163 0.295 0.282
1-to-1 0.249 0.254 0.159 0.163 0.304 0.300

interpolated
1-to-M 0.293∗† 0.280† 0.192∗† 0.183∗† 0.318∗† 0.307∗

1-to-0 0.302∗† 0.276† 0.193∗† 0.188∗† 0.315∗† 0.300†

1-to-1 0.282† 0.274† 0.182∗† 0.177∗† 0.314∗† 0.301

Note: 1-to-M, 1-to-0, and 1-to-1 indicate alignment heuristics: one-to-many, one-to-none, and one-to-one.
Superscripts ∗ and † indicate that the interpolated result is significantly better than the word-based
and corresponding one-best approaches, respectively.

to results reported at TREC, NTCIR, and CLEF (respectively) are difficult because
of differences in experimental conditions, but the comparisons we are able to make
suggest that these scores are competitive. The best results at those evaluations took
advantage of blind relevance feedback, multiple lexical resources, and long queries.
While these techniques can be useful in deployed applications, we decided not to run
experiments that include them to avoid masking the effects we wish to study. For
Arabic, the best reported results from TREC 2002 were close to 0.400 MAP [Fraser et al.
2002], achieved by performing query expansion and learning stem-to-stem mappings.
For Chinese, the NTCIR-8 topics are in the form of well-formed questions, and systems
that applied question rewriting performed better than those that did not—this is not
germane to the focus of our study. Also, 15 of the questions are about people, for which
our vocabulary coverage was not tuned. If we disregard these 15 topics, our baseline
system achieves a MAP of 0.178, close to the best reported results with comparable
settings, with a MAP of 0.181 [Zhou and Wade 2010]. For French, our baseline achieves
a score close to the single reported result at CLEF 2006 that did not incorporate blind
relevance feedback (0.261 MAP) [Savoy and Abdou 2007].

Results comparing the various query translation approaches are presented in
Table II. Blocks of rows represent the word-based approach, the grammar-based
approach, the decoder-based approach (using either the one-best translation or the
ten-best translations), and the interpolated model (based on a grid search of the inter-
polation parameters λ1 and λ2 in increments of 0.1 ranging from 0 to 1). Rows within
each block indicate which alignment heuristic was used: “1-to-M” for one-to-many,
“1-to-0” for one-to-none, and “1-to-1” for one-to-one. Each group of columns represents
a test collection: Arabic, Chinese, and French, and each individual column shows
results with either hierarchical grammars (SCFG) or flat grammars (PBMT). Note
that for the one-best, the one-to-none heuristic has the effect of discarding query terms
that are aligned to multiple target-language words.

For the grammar-based approach, we see consistent differences between flat and
hierarchical grammars. According to a standard randomized significance test used for
IR [Smucker et al. 2007], cdec-based hierarchical grammars significantly outperform
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Moses-based flat grammars (p < 0.05) for all nine settings from {ar, zh, fr}×{one-to-
many, one-to-one, one-to-none}. Furthermore, when we compare the best out of the
three for each MT approach separately (i.e., we pick the best-performing heuristic for
SCFG and compare it to the best heuristic for PBMT), the p-value is still under 0.1.
This suggests that the SCFG-based translation model is better at capturing query
translation alternatives for CLIR. Hierarchical grammars generally produce higher
quality output than flat grammars in standard translation tasks and this appears to
carry over to retrieval effectiveness as well.

One important implication of using different MT models is grammar size: As dis-
cussed in Section 5.1, flat grammars are much larger than hierarchical grammars
because they are less expressive and require many lexicalized rules to enumerate
transformations that can be succinctly captured in a few hierarchical rules. For the
grammar-based approach, the processing time for PPBMT is an order of magnitude
higher than for PSCFG. Note that the grammar-based approach does not use the de-
coder, and thus grammar size dominates query processing since we need to analyze
all applicable rules to generate the translation probabilities. In contrast, with the
decoder-based approach, using flat grammars is usually faster than using hierarchical
grammars since the latter requires synchronous parsing.

Turning to the decoder-based approach, examination of the output shows that the
final translated queries are quite similar for flat and hierarchical grammars. As a
result, there are few effectiveness differences between the one-best and 10-best set-
tings when comparing PBMT and SCFG. In contrast to the previous findings with the
grammar-based approach, the decoder-based approach appears to be insensitive to the
underlying MT model. We believe that the language model introduces an additional
source of constraints that helps to suppress infelicitous translations, thus reducing the
quality gap between flat and hierarchical grammars. Furthermore, since queries are
relatively short, the language model can do more “heavy lifting” in modeling translation
fluency.

When comparing the grammar-based approach and the decoder-based approach, the
former seems to be more effective overall for Arabic and Chinese, but not French. We
will next discuss the relative effectiveness of the interpolated approach. In consider-
ing the one-to-one, one-to-none, and one-to-many alignment heuristics, experimental
results suggest that the one-to-many method is the most effective overall, with the
best MAP score in 18 out of 24 cases. Four of the the six cases where one-to-many is
not the best are from Chinese, most likely due to word segmentation issues. Based on
these findings, we decided to use hierarchical grammars (cdec) and the one-to-many
heuristic for our remaining experiments.

7.2. Impact of Interpolation Parameters

Next, we take a closer look at parameter settings in the interpolated model, which com-
bines evidence from the word-based, grammar-based, and decoder-based approaches.
In order to examine the effectiveness of the interpolated model Pc with respect to pa-
rameters λ1 and λ2, we performed a grid search in increments of 0.1 ranging from 0
to 1 (same as in the previous section). These experimental results are summarized in
Table III. Note that this table contains results selected from Table II for comparison
purposes, since we focus only on the one-to-many heuristic using hierarchical transla-
tion grammars. In Figure 9, for each collection, we provide a scatterplot of MAP scores
for different values of λ1 and λ2. These plots also provide an alternative method for
visualizing the different conditions presented in Table III. For readability, the plots
only include a representative subset of λ2 settings (represented by different lines).

The left edge of each plot represents λ1 = 0, where we do not use Pnbest. Along the
y-axis, we see results for different settings of λ2, which controls the balance between

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 19, Publication date: October 2014.



19:22 F. Ture and J. Lin

Table III. Summary of Experimental Results Using the One-to-Many Heuristic and Hierarchical
Grammars for All Three CLIR Collections

MAP
Condition Parameters Arabic Chinese French

A word-based (Pword) λ1=0, λ2=0 0.271 0.150 0.262
B grammar-based (PSCFG) λ1=0, λ2=1 0.293 0.182 0.297
C decoder-based (Pnbest) λ1=1, λ2=0 0.255 0.159 0.307
D 1-best - 0.242 0.156 0.276
E interpolated (Pc) best {λ1, λ2} 0.293a,c,d 0.192a,b,c,d 0.318a,d

interpolated (Pc) 10-fold CV 0.293a,c,d 0.190a,b,c,d 0.311a

interpolated (Pc) transfer 0.288 0.188a 0.287

Note: Superscripts indicate that the interpolated model (E) is significantly more effective than conditions
A, B, C, and D as detailed in the text.

PSCFG and Pword. Within these settings, λ2 = 0 corresponds to using only Pword; let us
call this condition A. When λ2 is set to 1, we rely only on PSCFG; call this condition B.
At the right edge of each scatterplot, λ1 = 1, we use only Pnbest; call this condition C.
For reference, the dotted horizontal line represents the one-best MT translation; call
this condition D.

Let us label the interpolation setting with the best MAP score condition E. For the
Chinese collection, this occurs with λ1 = 0.1 and λ2 = 0.8 (0.192 MAP), which means
most of the weight is placed on the grammar-based approach PSCFG. With the French
collection, the most effective setting is λ1 = 0.5 and λ2 = 0.3, resulting in a MAP
score of 0.318. Interestingly, for the Arabic collection, the best result is obtained when
λ1 = 0 and λ2 = 1.0, with 0.293 MAP. In other words, the highest effectiveness is
obtained based entirely on PSCFG, ignoring the distributions Pword and Pnbest. There
is no single interpolation setting that simultaneously maximizes effectiveness for all
three collections.

Based on randomized significance testing [Smucker et al. 2007], the interpolated
approach (E) outperforms all other conditions with 95% confidence in the Arabic collec-
tion, except for the grammar-based approach (B), since they are identical. For French,
we found that the interpolated approach (E) is significantly better than the word-based
(A) and one-best (D) approaches. For Chinese, condition E is significantly better than
all of the other conditions (A, B, C, and D). These results suggest that the individual
models are complementary, and a combination of evidence yields higher effectiveness
overall.

Leaving out the interpolated condition, we find that the grammar-based approach
(B) is significantly better than the word-based approach (A) for Arabic and Chinese,
but statistically indistinguishable for French. The 10-best decoder-based approach (C)
is significantly better than the word-based approach (A) for French, but this does not
hold for the other two collections. The lack of consistent findings across test collections
may be due to a variety of reasons: overall quality of the translation model (in general,
MT quality on European languages is higher), mismatch in language models, or char-
acteristics of the information needs. In any case, results indicate that there is no single
approach that outperforms the rest in all three collections.

The experiments thus far involved tuning interpolation parameters on the same
topics that are used for testing. This is of course not reflective of a real-world setting,
but because of the relatively small test collections available to us, we felt it was rea-
sonable to first establish upper-bound effectiveness given oracle parameter settings.
Separately, we ran tenfold cross-validation experiments on each collection, by selecting
the parameters that maximizes MAP on nine folds and evaluating on the remaining
one. This method yields a MAP of 0.293 for Arabic, 0.190 for Chinese, and 0.311 for
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Fig. 9. Results of grid search on the interpolated model parameters for the TREC 2002 English-Arabic,
NTCIR-8 English-Chinese, and CLEF 2006 English-French collections.
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French, all significantly better than the word-based approach (A). These figures are
reported in Table III under the condition “10-fold CV”. In the case of Arabic, the cross-
validation run is significantly better than the one-best (D) and 10-best decoder-based
(C) approaches as well. For the Chinese collection, the cross-validation run signifi-
cantly outperforms all other models. For the French collection, cross-validation results
are significantly better than the word-based approach (A). These results show that
with training data, we can achieve significant improvements in effectiveness using the
interpolated model. However, it appears that the training topics must be similar to the
test topics, since the parameters learned for each collection are different.

To further examine this issue, we also explored using two of the collections to tune
parameters for the third collection—simulating the scenario where we have hetero-
geneous training data (a crude form of “transfer learning”). For this, we first ranked
each (λ1, λ2) pair by MAP on each collection. In order to select the parameters for a
particular collection, we added the ranks from the other two collections and picked the
one with the lowest sum. Using this method, the selected parameters were (0.1, 0.8) for
Arabic, (0.3, 0.5) for Chinese, and (0.1, 0.1) for French, yielding MAP scores of 0.288,
0.188, and 0.287, respectively. These results are reported in Table III under the condi-
tion “transfer.” When compared to the word-based approach (A), these settings showed
significant improvements only for Chinese. This analysis shows that the optimal com-
bination of models depends on the collection, language, and resources. Once these are
fixed, we can use a subset of the topics to appropriately tune parameters for the rest. It
does not appear, however, that we can generalize the interpolation model in a robust,
collection-independent manner.

7.3. Per-Topic Analysis

It is well known that comparing mean effectiveness across many topics hides topical
variations, and thus for a detailed analysis, we examined the distribution of the average
precision (AP) differences between the various approaches for each topic. The interpo-
lated model achieved better AP than the word-based approach for 36 of 46 topics (78%)
in the Arabic collection, ignoring 4 of the 50 topics which exhibited differences of 0.001
or less. For the Chinese collection, the same was true for 42 of 57 topics (74%), with
16 exhibiting negligible differences. For the French collection, the comparable statistic
is 30 of 46 (65%), with 4 topics exhibiting negligible differences. Per-topic AP differ-
ences are plotted in Figure 10 for the grammar-based (B), 10-best decoder-based (C),
one-best (D), and interpolated (E) approaches with respect to the word-based approach
(A). Points above the x-axis denote higher effectiveness and points below denote lower
effectiveness. The topics are sorted left to right by decreasing AP difference for the
interpolated model (E).

These plots clearly show that the approaches behave very differently for many top-
ics; instead of small variations across topics, we see instances where one approach
really helped or hurt. For instance, in the Arabic collection, the 10-best decoder-based
approach (C) is a clear winner for topic 66, where the interpolated model underper-
forms, but for topic 32, the decoder-based approach really hurt. In the Chinese collec-
tion, we see a few topics where the decoder (C) or one-best (D) beats the interpolated
model, but far more topics where effectiveness is substantially worse. In the French col-
lection, we see less per-topic variability, but for a few topics the one-best approach (D)
is terrible. In all three collections, we note that the grammar-based approach exhibits
less per-topic variation than the decoder-based approach (with respect to the interpo-
lated model)—for some topics, the decoder-based approach fails spectacularly (points
far below the x-axis), but this is less often the case for the grammar-based approach.
Overall, this analysis supports our argument that a combination-of-evidence approach
captures the strengths of each individual model and “moderates” the large negative
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Fig. 10. Per-topic AP differences compared to the word-based approach (condition A) for the TREC 2002
English-Arabic, NTCIR-8 English-Chinese, and CLEF 2006 English-French collections. Topics are sorted by
the AP difference for the interpolated model (condition E).
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effects with individual models for some topics. The interpolated model is almost al-
ways better than the worst individual approach and often close to the best individual
approach. The only topic in which the interpolated model (E) is worse than all other
approaches (B, C, and D) is CLEF topic 326.

We analyzed a few topics in more detail to gain further insight. As expected, the
decoder-based approach (C) is highly effective when appropriate translations are found.
As an example, CLEF topic 336 NBA labor conflict is translated into the following
query:

#comb(#wsyn(1.0 nba)
#wsyn(1.0 travail)
#wsyn(0.96 confl, 0.04 conflit))

In contrast, with the grammar-based (B) and word-based (A) approaches, the struc-
tured query contains other translation alternatives such as contradiction instead of
conflit or words related to labor such as social. These alternative translations introduce
noise and hurt retrieval effectiveness. On the other hand, the one-best MT approach
(D) works poorly because the top scoring hypothesis omits the translation of labor
altogether. The second-best translation does not suffer from this issue, serving as an
excellent example of the benefits of using n-best translations instead of only relying on
the single best.

Another interesting case is CLEF topic 313, centenary celebrations, which is trans-
lated correctly into French as centenaire by the decoder. However, the task of CLIR
is not only about finding the best translation, but retrieving relevant documents. The
grammar-based approach (B) includes célébrations (Eng. celebration) in addition to cen-
tenaire, which increases recall and improves the average precision. This is an example
where translation diversity is beneficial—as we have previously discussed, alternative
translation better alleviates mismatches between vocabularies used by searchers and
document writers.

A case that illustrates the downside of relying on language models is CLEF topic
341 theft of “the scream.” In this case, the translation candidate vol du “cri” is down-
weighted by the language model since it is a sequence of words never seen before (in
the training data). Instead, the decoder picks vol de “scream” as the top translation,
which results in lower retrieval effectiveness.8 When the MT system fails to find an
appropriate translation, the word-based approach (A) is superior because it does not
discard translation alternatives. In this case, the grammar-based approach (B) per-
forms slightly worse than the word-based approach (A), but much better than the
decoder-based approach (C).

7.4. Efficiency

An important, but often neglected, aspect of cross-language information retrieval is ef-
ficiency. In general, query translation approaches generate complex structured queries,
which are substantially slower to evaluate than simple bag-of-words queries. An ap-
proach that is significantly more effective may be substantially slower—whether the
trade-off is worthwhile depends on the application, but effectiveness/efficiency trade-
offs should be explicitly explored to better inform the system designer.

In this section, we present experimental results that quantify the efficiency of the
previously-explored techniques in terms of per-topic query latency. Experiments were
performed on a server running Red Hat Linux, with dual Intel Xeon “Westmere”
quadcore processors (E5620 2.4GHz) and 128GB RAM. Note that none of the inverted

8“Scream” also refers to a popular horror movie.
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Table IV. Average Query Latency (in ms) for the TREC 2002 English-Arabic Collection,
Broken Down into the Various Processing Stages

Pnbest

Process Pword PSCFG 1-best 10-best Pc

MT
Extraction - 7.6
Decoding - - 134.9

IR
Generation 48.1 64.4 5.8 62.3 113.5

Ranking 545.6 514.2 97.6 179.0 602.0
Total time (in ms) 594±22 586±13 246±15 383±22 858±20

indexes are very big, and experiments were conducted with a “warm” cache, which
likely meant that postings lists were memory resident (based on OS-level caching). All
experiments ran in a single thread, one topic after another sequentially. We focused
on the TREC 2002 Arabic-English topics, although results from the other collections
are qualitatively similar. End-to-end average query evaluation latency (measured in
milliseconds) is shown in the bottom row of Table IV for each of our approaches. The
values reported are averaged across three trials with 95% confidence intervals shown.

As outlined in Section 2, the three main stages in the MT pipeline are word align-
ment, grammar extraction, and decoding. Word alignment is treated as a preprocessing
step since it is query-independent and required for all three approaches; once the align-
ments are generated, they can be stored on disk and loaded when needed. Thus, the
time for word alignment is not included in our evaluation. For the grammar-based
approach PSCFG we need to extract the rules that apply to each query, whereas the
decoder-based Pnbest and interpolation Pc approaches require decoding. Decoding is rel-
atively expensive since it involves a search through the hypothesis space, but there is
no measurable difference between generating one-best and 10-best hypotheses. Since
queries are short, MT processing times are much lower than for typical translation
tasks that involve complete sentences.

The remaining two processing stages are part of retrieval: query generation and
document ranking. For query generation, we only measure query-dependent costs,
since other costs such as loading the bilingual dictionary need to be performed only
once at startup. For the word-based approach, Pword can be computed for all words
in the vocabulary before query time, so we only need to preprocess the query and
load precomputed translation probabilities. For the grammar-based approach, query
generation involves loading the extracted translation grammar and processing the
rules to compute PSCFG. For the decoder-based approach, each translation hypothesis
needs to be processed to compute Pnbest, so query generation time increases (roughly)
linearly with n.

The speed of the final step, document ranking (i.e., query evaluation), depends on
the complexity of the structured query—in particular, the number of clauses and the
number of translation alternatives. All our approaches generate the same number of
clauses but differ in the number of query terms in each clause. The distributions Pword
and PSCFG usually contain more translation alternatives than Pnbest, thus resulting in
slower query evaluation. For this reason, query evaluation with the interpolated model
is slower as well.

From Table IV, we see that the n-best approach is significantly faster than the word-
based approach, even though it requires additional MT processing to translate the
queries. When n = 1, the reduction in total running time is nearly 60%, and with
10-best, 35%. A similar trade-off exists for the word-based approach: the structured
queries can be simplified if more aggressive thresholding is applied, for example, if
C or H increased in Equation (10), but at the cost of effectiveness. In terms of effi-
ciency, there is not much difference between the grammar-based approach and the
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Fig. 11. Visualization of the effectiveness/efficiency trade-offs for our CLIR models.

word-based approach, but since the grammar-based approach is more effective, it
should be preferred overall. The interpolated model Pc is the most effective but also
the slowest. Compared to the word-based approach, running time is 44% longer, which
might be acceptable given the significant improvements, but this ultimately depends
on the application.

For a better understanding of the trade-off between effectiveness and efficiency,
Figure 11 shows MAP with respect to total running time for all three collections.
Instead of absolute values, we plot relative differences with respect to the word-based
approach. As expected, we see a general trend of more effective approaches being slower
for all three collections. The lower-right quadrant contains settings that are slower and
worse (fortunately, no settings fall into this category). The upper-left quadrant contains
settings that are faster and better: the one-best and 10-best approaches appear here
for the Chinese and French collections as well as the grammar-based approach for
the Arabic collection. The other two quadrants represent a trade-off of efficiency for
effectiveness and vice versa.

Efficiency results reported in Table IV and Figure 11 were all computed using a
hierarchical MT system (cdec). Although flat MT approaches are considered faster
than hierarchical MT, we did not observe much difference in the MT running time
when Moses was used instead of cdec for our queries. Thus, the choice of grammars
does not appear to have much of an efficiency impact for the decoder-based approach.
However, for the grammar-based approach, using flat grammars is a poor choice—the
generation step takes more than an order of magnitude longer because of the verbosity
of flat grammars.

Ultimately, the best balance between effectiveness and efficiency depends on the end
application, but we can offer some guidance. For a faster and possibly more effective
model, Pnbest and PSCFG seem to be good alternatives to Pword. The interpolated model
is significantly more effective, but substantially slower.

8. FUTURE WORK AND CONCLUSIONS

In this article, we introduced a framework for exploiting internal representations
of modern statistical machine translation systems for cross-language information
retrieval. Effective use of these representations requires balancing the use of context to
disambiguate translation candidates with the need to preserve diversity in translation
alternatives. We proposed two specific stages in the MT pipeline that are particularly
amenable to integration with cross-language retrieval: with the grammar-based

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 19, Publication date: October 2014.



Exploiting Representations from Statistical Machine Translation 19:29

approach, we construct translation probabilities from the translation grammar
extracted for a specific query, thereby incorporating context as captured in the trans-
lation rules; with the decoder-based approach, we reconstruct translation probabilities
from the n-best translations, thereby taking advantage of both the translation model
and the language model. Within this framework, we explored design alternatives
regarding the choice of flat vs. hierarchical grammars and different heuristics for
handling multiple word alignments. Experiments show that an interpolated model
which combines evidence from the word-, grammar-, and decoder-based approaches
is significantly more effective than competitive baselines across multiple collections.
These results advance the state of the art in cross-language information retrieval, but
there are two limitations we hope to address in future work.

The first limitation is that the optimal setting of parameters in our interpolated
model requires a tuning set. Our cross-validation experiments show that this is possible
as long as we have topics and relevance judgments for the same collection. The param-
eter settings do not generalize across collections, and our simple attempt at “transfer
learning” (tuning with heterogeneous collections) was not successful. At present, it is
unclear if the specificity of the parameter settings is a result of topic and language
effects, or other characteristics of the test collections. It is also possible that data used
to train the translation and language models play an important role. For future work,
we are attempting to better understand these issues to increase the generalizability of
our techniques.

The second limitation is that our techniques currently handle phrases on the tar-
get language side but not the source language side. With the one-to-many multiple
alignment heuristic, we are able to learn correspondences such as (brand, marque de
fabrique), which are realized as phrase queries against the target collection. However,
the source side of these pairs are individual query terms in our present formulation.
Put another way, our structured queries always have one clause per query term on the
source side, even though the target side translations may contain phrases. The chal-
lenge of handling source phrases concerns the proper treatment of ambiguous phrase
segmentation. For example, suppose a query with three terms, A, B, and C, can be
segmented as (A B, C) or (A, B C): What’s the form of the structured query that cap-
tures these alternatives, and how would documents be scored accordingly? Solving this
problem in the general case requires a technique that will handle queries in the form
of arbitrary lattices, since alternative segmentations will necessarily overlap. We are
not aware of any current solutions, but this would be an interesting future direction to
explore.

In conclusion, we believe this work represents a good example of the synergies that
are possible from closer integration between disparate disciplines. There is little inter-
section between researchers who work on information retrieval and those who work on
machine translation, but clearly there is much to gain from cross-language retrieval
techniques that treat MT systems as more than black boxes. We hope that our work will
foster greater collaboration between the two communities who are ultimately working
on the same goal of improving multilingual information access.
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