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ABSTRACT
This paper develops a general, formal framework for model-
ing term dependencies via Markov random fields. The model
allows for arbitrary text features to be incorporated as ev-
idence. In particular, we make use of features based on
occurrences of single terms, ordered phrases, and unordered
phrases. We explore full independence, sequential depen-
dence, and full dependence variants of the model. A novel
approach is developed to train the model that directly max-
imizes the mean average precision rather than maximizing
the likelihood of the training data. Ad hoc retrieval experi-
ments are presented on several newswire and web collections,
including the GOV2 collection used at the TREC 2004 Ter-
abyte Track. The results show significant improvements are
possible by modeling dependencies, especially on the larger
web collections.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
Information retrieval, term dependence, phrases, Markov
random fields

1. INTRODUCTION
There is a rich history of statistical models for information

retrieval, including the binary independence model (BIM),
language modeling [16], inference network model [23], and
the divergence from randomness model [1], amongst oth-
ers [4]. It is well known that dependencies exist between
terms in a collection of text. For example, within a SIGIR
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proceedings, occurrences of certain pairs of terms are cor-
related, such as information and retrieval. The fact that
either one occurs provides strong evidence that the other
is also likely to occur. Unfortunately, estimating statistical
models for general term dependencies is infeasible, due to
data sparsity. For this reason, most retrieval models assume
some form of independence exists between terms. Some re-
searchers even suggest modeling term dependencies is unnec-
essary as long as a good term weighting function is used [19].
Most work on modeling term dependencies in the past has

focused on phrases/proximity [2, 3] or term co-occurrences [24].
Most of these models only consider dependencies between
pairs of terms. In [3], Fagan examines how to identify and
use non-syntactic (statistical) phrases. He identifies phrases
using factors such as the number of times the phrase oc-
curs in the collection and the proximity of the phrase terms.
His results suggest no single method of phrase identifica-
tion consistently yields improvements in retrieval effective-
ness across a range of collections. For several collections,
significant improvements in effectiveness are achieved when
phrases are defined as any two terms within a query or doc-
ument with unlimited proximity. That is, any two terms
that co-occurred within a query or document were consid-
ered a phrase. However, for other collections, this definition
proved to yield marginal or negative improvements. The
results presented by Croft et. al. in [2] on the CACM col-
lection suggest similar results, where phrases formed with a
probabilistic AND operator slightly outperformed proximity
phrases. Term co-occurrence information also plays an im-
portant role in the tree dependence model, which attempts
to incorporate dependencies between terms in the BIM [24].
The model treats each term as a node in a graph and con-
structs a maximum spanning tree over the nodes, where the
weight between a pair of terms (nodes) is the expected mu-
tual information measure (EMIM) between them.
Other models have been proposed to capture dependen-

cies between more than two terms, such as the Bahadur
Lazarsfeld expansion (BLE) [17], which is an exact method
of modeling dependencies between all terms, and the Gen-
eralized Dependence Model that generalizes both the tree
dependence model and the BLE expansion [25]. Despite the
more complex nature of these models, they have been shown
to yield little or no improvements in effectiveness.
Several recent studies have examined term dependence

models for the language modeling framework [5, 15]. These
models are inspired by the tree dependence model and again
only consider dependencies among pairs of terms. The model
presented by Gao et. al in [5] showed consistent improve-
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ments over a baseline query likelihood system on a number of
TREC collections. Unfortunately, the model requires com-
puting a link structure for each query, which is not straight-
forward.
Recently, a paper by Mishne and de Rijke discussed the

use of proximity information to improve web retrieval [12].
Our model, developed without knowledge of this work, shares
many closely related insights. Despite the high level similar-
ity, the details of the models differ greatly, with our model
allowing more general query dependencies and features to
be considered in a more formally well-grounded framework.
The consistent improvements presented by Gao et. al. are

in stark contrast to the results reported historically for other
term dependence models. It is our hypothesis that the poor
and inconsistent results achieved in the past are caused by
two factors. First, most dependence models are built upon
the BIM. Therefore, term dependencies must be estimated
in both the relevant and non-relevant classes, where there is
often a very small or non-existent sample of relevant/non-
relevant documents available to estimate the model param-
eters from. Second, the document collections used in past
experiments, such as CACM and INSPEC consist of a very
small number of short documents. There is very little hope
of accurately modeling term dependencies when most pairs
of terms only occur a handful of times, if at all. Essentially,
the models themselves are not deficient. Instead, they sim-
ply lacked sufficient data for proper parameter estimation
and evaluation.
Thus, we formulate the following two hypotheses: 1) de-

pendence models will be more effective for larger collections
than smaller collections, and 2) incorporating several types
of evidence (features) into a dependence model will further
improve effectiveness. Our first hypothesis is based on the
fact that larger collections are noisier despite the fact they
contain more information. As a result, independent query
terms will match many irrelevant documents. If matching
is instead done against more specific patterns of dependent
query terms, then many of the noisy, irrelevant documents
will be filtered out. In addition, we feel that considering vari-
ous combinations of term features can yield further improve-
ments over the previously researched methods, as it allows
us to abstract the notions of dependence and co-occurrence.
The rest of this paper is presented as follows. In Section 2

we describe a general Markov random field retrieval model
that captures various kinds of term dependencies. We also
show how arbitrary features of the text can be used to gen-
eralize the idea of co-occurrence, how the model can be used
to express three different dependence assumptions, and how
to automatically set the parameters from training data. In
Section 3 we describe the results of ad hoc retrieval experi-
ments done using our model on two newswire and two web
collections. We show that dependence models can signif-
icantly improve effectiveness, especially on the larger web
collections. Finally, in Section 4 we summarize the results
and propose future research directions.

2. MODEL
In this section we describe a Markov random field ap-

proach to modeling term dependencies. Markov random
fields (MRF), also called undirected graphical models, are
commonly used in the statistical machine learning domain
to succinctly model joint distributions. In this paper we use
MRFs to model the joint distribution PΛ(Q,D) over queries

Q and documents D, parameterized by Λ. We model the
joint using this formalism because we feel it is illustrative
and provides an intuitive, general understanding of different
forms of term dependence.
Much like the language modeling framework, our model

does not explicitly include a relevance variable. Instead,
we assume there is some underlying joint distribution over
queries and documents (PΛ(Q,D)). Given a set of query and
document pairs, Λ must be estimated according to some
criteria. In the case of modeling relevance or usefulness,
which we wish to do here, imagine there exists a list of
query and document pairs. Suppose elements of this list
are gathered from many (infinite) users of some informa-
tion retrieval system who theoretically examine every pair
of queries and documents. If a user finds document D rele-
vant to query Q, then the pair (Q,D) is added to the list.
This list can be thought of as a sample from some relevance
distribution from which Λ can be estimated. We feel that
ranking documents by PΛ(D|Q) upholds the original spirit
of the Probability Ranking Principle (PRP) [18] under the
assumption that the issuer of query Q is likely to agree with
the relevance assessments of a majority of users. One could
also estimate such a model for non-relevance or user-specific
relevance, amongst others. This view of relevance is similar
to Lavrenko’s Generative Relevance Hypothesis [8].

2.1 Overview
A Markov random field is constructed from a graph G.

The nodes in the graph represent random variables, and the
edges define the independence semantics between the ran-
dom variables. In particular, a random variable in the graph
is independent of its non-neighbors given observed values
for its neighbors. Therefore, different edge configurations
impose different independence assumptions. In this model,
we assume G consists of query nodes qi and a document
node D, such as the graphs in Figure 1. Then, the joint
distribution over the random variables in G is defined by:

PΛ(Q,D) =
1

ZΛ

∏
c∈C(G)

ψ(c; Λ)

where Q = q1 . . . qn, C(G) is the set of cliques in G, each
ψ(·; Λ) is a non-negative potential function over clique con-
figurations parameterized by Λ and ZΛ =

∑
Q,D

∏
c∈C(G) ψ(c; Λ)

normalizes the distribution. Note that it is generally infea-
sible to compute ZΛ because of the exponential number of
terms in the summation. The joint distribution is uniquely
defined by the graph G, the potential functions ψ, and the
parameter Λ.
For ranking purposes we compute the posterior:

PΛ(D|Q) =
PΛ(Q,D)

PΛ(Q)

rank
= logPΛ(Q,D)− logPΛ(Q)

rank
=

∑
c∈C(G)

logψ(c; Λ)

which can be computed efficiently for reasonable graphs.
As noted above, all potential functions must be non-negative,

and are most commonly parameterized as:

ψ(c; Λ) = exp[λcf(c)]

where f(c) is some real-valued feature function over clique
values and λc is the weight given to that particular feature
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function. Substituting this back into our ranking function,
we end up with the following ranking function

PΛ(D|Q) rank
=

∑
c∈C(G)

λcf(c) (1)

To utilize the model, the following steps must be taken for
each query Q: 1) construct a graph representing the query
term dependencies to model, 2) define a set of potential
functions over the cliques of this graph, 3) rank documents
in descending order of PΛ(D|Q).
Given its general form, it is of little surprise that the MRF

model can easily emulate most of the popular retrieval and
dependence models by following the steps above, such as
unigram, bigram, and biterm language modeling [16, 20,
21], the BIM and the associated methods by which term
dependence is modeled [17, 25, 24].

2.2 Variants
We now describe and analyze three variants of the MRF

model, each with different underlying dependence assump-
tions. The three variants are full independence (FI), sequen-
tial dependence (SD), and full dependence (FD). Figure 1
shows graphical model representations of each.
The full independence variant makes the assumption that

query terms qi are independent given some document D.
That is, the likelihood of query term qi occurring is not af-
fected by the occurrence of any other query term, or more
succinctly, P (qi|D, qj �=i) = P (qi|D). This assumption un-
derlies many retrieval models.
As its name implies, the sequential dependence variant as-

sumes a dependence between neighboring query terms. For-
mally, this assumption states that P (qi|D, qj) = P (qi|D)
only for nodes qj that are not adjacent to qi. Models of this
form are capable of emulating bigram and biterm language
models [20, 21].
The last variant we consider is the full dependence vari-

ant. In this variant we assume all query terms are in some
way dependent on each other. Graphically, a query of length
n translates into the complete graph Kn+1, which includes
edges from each query node to the document node D, as
well. This model is an attempt to capture longer range de-
pendencies than the sequential dependence variant. If such
a model can accurately be estimated, it should be expected
to perform at least as well as a model that ignores term
dependence.
We must stress that we are not trying to model the exact

joint PΛ(Q,D) here. Instead, we are attempting to approx-
imate the distribution using a generalized exponential form.
How close our approximation is to reality depends wholly on
the choice of potential functions and how the parameter Λ
is set. In the next two subsections, we explain some possible
approaches to solving these problems.

2.3 Potential Functions
As we just explained, the potential functions ψ play a very

important role in how accurate our approximation of the
true joint distribution is. These functions can be thought of
as compatibility functions. Therefore, a good potential func-
tion assigns high values to the clique settings that are the
most “compatible” with each other under the given distri-
bution. As an example, consider a document D on the topic
of information retrieval. Using the sequential dependence
variant, we would expect ψ(information, retrieval,D) >

ψ(information, assurance,D), as the terms information and
retrieval are much more “compatible” with the topicality of
document D than the terms information and assurance.
Since documents are ranked by Equation 1, it is also im-

portant that the potential functions can be computed effi-
ciently. With this in mind, we opt to use potential functions
that can be calculated using Indri1, our new scalable search
engine that combines language modeling and the inference
network framework [10, 11, 23].
Based on these criteria and previous research on phrases

and term dependence [2, 3] we focus on three types of poten-
tial functions. These potential functions attempt to abstract
the idea of term co-occurrence. As we see from Equation 1,
each potential is defined by a feature function and weight.
In the remainder of this section we specify the features we
use, and in the next section we show how to automatically
set the weights.
Since potentials are defined over cliques in the graph, we

now proceed to enumerate all of the possible ways graph
cliques are formed in our model and how potential func-
tion(s) are defined for each. The simplest type of clique that
can appear in our graph is a 2-clique consisting of an edge
between a query term qi and the document D. A poten-
tial function over such a clique should measure how well, or
how likely query term qi describes the document. In keeping
with simple to compute measures, we define this potential
as:

ψT (c) = λT logP (qi|D)

= λT log

[
(1− αD)

tfqi,D

|D| + αD
cfqi

|C|
]

where P (qi|D) is simply a smoothed language modeling es-
timate. Here, tfw,D is the number of times term w occurs
in document D, |D| is the total number of terms in docu-
ment D, cfw is the number of times term w occurs in the
entire collection, and |C| is the length of the collection. Fi-
nally, αD acts as a smoothing parameter [26]. This potential
makes the assumption that the more likely a term is given a
document’s language model, the more “compatible” the two
random variables qi and D are.
Next, we consider cliques that contain two or more query

terms. For such cliques there are two possible cases, ei-
ther all of the query terms within the clique appear con-
tiguously in the query or they do not. The fact that query
terms appear contiguously within a query provides different
(stronger) evidence about the information need than a set
of non-contiguous query terms. For example, in the query
train station security measures (TREC topic 711), if any of
the subphrases, train station, train station security, station
security measures, or security measures appear in a doc-
ument then there is strong evidence in favor of relevance.
Therefore, for every clique that contains a contiguous set of
two or more terms qi, . . . , qi+k and the document node D
we apply the following “ordered” potential function:

ψO(c) = λO logP (#1(qi, . . . , qi+k)|D)

= λO log

[
(1− αD)

tf#1(qi...qi+k),D

|D| + αD

cf#1(qi...qi+k)

|C|
]

where tf#1(qi...qi+k),D denotes the number of times the exact
phrase qi . . . qi+k occurs in document D, with an analogous

1Available at http://www.lemurproject.org
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Figure 1: Example Markov random field model for three query terms under various independence assump-
tions. (left) full independence, (middle) sequential dependence, (right) full dependence.
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definition for cf#1(qi...qi+k). For more information on esti-
mating so-called language feature models see [11].
Although the occurrence of contiguous sets of query terms

provide strong evidence of relevance, it is also the case that
the occurrence of non-contiguous sets of query terms can
provide valuable evidence. However, since the query terms
are not contiguous we do not expect them to appear in or-
der within relevant documents. Rather, we only expect the
terms to appear ordered or unordered within a given prox-
imity of each other. In the previous example, documents
containing the terms train and security within some short
proximity of one another also provide additional evidence
towards relevance. This issue has been explored in the past
by a number of researchers [2, 3]. For our purposes, we con-
struct an “unordered” potential function over cliques that
consist of sets of two or more query terms qi, . . . , qj and
the document node D. Such potential functions have the
following form:

ψU (c) = λU logP (#uwN(qi, . . . , qj)|D)

= λU log

[
(1− αD)

tf#uwN(qi...qj),D

|D| + αD

cf#uwN(qi...qj)

|C|
]

where tf#uwN(qi...qj),D is the number of times the terms
qi, . . . qj appear ordered or unordered within a window N
terms. In our experiments we will explore various settings
of N to study the impact it has on retrieval effectiveness.
It should also be noted that not only do we add a poten-
tial function of this form for non-contiguous sets of two or
more query terms, but also for contiguous sets of two or
more query terms. Therefore, for cliques consisting of con-
tiguous sets of two or more query terms and the document
node D we define the potential function to be the product
ψO(c)ψU (c), which itself is a valid potential function.
Using these potential functions we derive the following

specific ranking function:

PΛ(D|Q)
rank
=

∑
c∈C(G)

λcf(c)

=
∑
c∈T

λT fT (c) +
∑
c∈O

λOfO(c) +
∑

c∈O∪U

λUfU (c)

where T is defined to be the set of 2-cliques involving a
query term and a document D, O is the set of cliques con-
taining the document node and two or more query terms
that appear contiguously within the query, and U is the set
of cliques containing the document node and two or more
query terms appearing non-contiguously within the query.
For any clique c that does not contain the document node
we assume that ψ(c) = 1 for all settings of the clique, which

has no impact on ranking. One may wish to define a poten-
tial over the singleton document node, which could act as a
form of document prior.
Finally, the feature functions are summarized in Table 1.

The table also provides a summary of the Indri query lan-
guage expressions that can be constructed to easily evaluate
each.

2.4 Training
Given our parameterized joint distribution and a set of

potential functions, the final step is to set the parameter
values (λT , λO, λU ). Most methods for training generative
models require training data that is assumed to be indepen-
dent and identically distributed samples from the underly-
ing distribution. From this data, the model parameters are
estimated in various ways. Two standard approaches are
maximum likelihood and maximum a posteriori estimation.
Other methods exist for training MRFs, as well [22].
However, there are two hindrances that cause us to aban-

don traditional training methodologies. First, the event
space Q×D is extremely large or even infinite depending on
how it is defined. Generally, the only training data available
is a set of TREC relevance judgments for a set of queries.
The documents found to be relevant for a query can then be
assumed to be samples from this underlying relevance distri-
bution. However, this sample is extremely small compared
to the event space. For this reason, it is highly unlikely that
a maximum likelihood estimate from such a sample would
yield an accurate estimate to the true distribution.
Even if a large sample from the underlying distribution

existed, it would still be very difficult to compute a maxi-
mum likelihood estimate because of the normalization factor
ZΛ, which is infeasible to compute both in our model and
in general. Methods exist for efficiently approximating ZΛ,
but none appear to be directly applicable to a problem of
our size.
Many IR techniques that involve automatically setting pa-

rameters from training data make use of maximum likeli-
hood or related estimation techniques. Even though these
techniques are formally motivated, they often do not max-
imize the correct objective function. Simply because the
likelihood of generating the training data is maximized does
not mean the evaluation metric under consideration, such as
mean average precision, is also maximized. This is true be-
cause models serve as rough approximations to complex dis-
tributions, and therefore the likelihood surface is unlikely to
correlate with the metric surface. This has been shown to be
true experimentally and is known as metric divergence [13].

475



Feature Type Indri Expression Value

fT (qi, D) Term qi log
[
(1 − αD)

tfqi,D

|D| + αD
cfqi
|C|

]

fO(qi, qi+1 . . . , qi+k, D) Ordered Phrase #1(qiqi+1 . . . qi+k) log

[
(1 − αD)

tf#1(qi...qi+k),D

|D| + αD

cf#1(qi...qi+k)

|C|

]

fU (qi, ..., qj , D) Unordered Phrase #uwN(qi . . . qj) log

[
(1 − αD)

tf#uwN(qi...qj),D

|D| + αD

cf#uwN(qi...qj)

|C|

]

Table 1: Summary of feature functions and how each is represented in the Indri query language.

Therefore, directly maximizing the retrieval metric under
consideration may prove to be more useful than focusing on
“goodness of fit”. Even though it may be infeasible in gen-
eral, it is somewhat surprising there has been little research
into directly maximizing the metric in question for prob-
abilistic models. We note that there has been some work
done into finding optimal rankings using ranking SVMs [6],
which is more in the spirit of directly optimizing the metric
of interest, rather than hoping to do so indirectly.
Therefore, we choose to train the model by directly max-

imizing mean average precision. Since our model only has
three parameters, it is possible to do a parameter sweep to
find the optimal parameters. However, such a parameter
sweep can be computationally intensive. A few observations
allow us to devise a relatively efficient training procedure.
First, the ranking function is invariant to parameter scale.
That is, for some fixed K, rank order will be preserved if we
modify the parameters such that λ̂T = KλT , λ̂O = KλO,
and λ̂U = KλU , since the constant can always be factored
out. Therefore, we can enforce the constraint:

λT + λO + λU = 1

Plotting mean average precision surfaces for several col-
lections subject to this constraint leads to the following ob-
servations: 1) the interesting part of the surface exists for
non-negative parameter values, 2) over this interesting range
of parameter values, the surface it is always concave or very
close to concave, and 3) the surface always has the same
general form with the maximum being achieved nearly al-
ways around the same point in parameter space. An exam-
ple mean average precision surface for the GOV2 collection
using the full dependence model plotted over the simplex
λT + λO + λU = 1 is shown in Figure 2.
Therefore, a simple coordinate-level hill climbing search is

used to optimize mean average precision by starting at the
full independence parameter setting (λT = 1, λO = λU = 0).
Since the surface is (nearly) concave we are likely to find the
global maximum. More details can be found in [9].
Convergence speed is only bounded by the underlying

search engine’s efficiency at evaluating the training set queries.
Since training requires the same queries to be evaluated re-
peatedly, most statistics including feature function values
can be cached allowing for further speed improvements.

3. EXPERIMENTAL RESULTS
In this section we describe experiments using the three

model variants. Our aim is to analyze and compare the re-
trieval effectiveness of each variant across collections of vary-
ing size and type. We make use of the Associated Press and
Wall Street Journal subcollections of TREC, which are small
homogeneous collections, and two web collections, WT10g
and GOV2, which are considerably larger and less homoge-
neous.
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Figure 2: Mean average precision surface over sim-
plex of parameter values for GOV2 using FD model.

Name Description Size # Docs Topics
WSJ Wall St. Jour-

nal ’87–’92
510 MB 173,252 50–200

AP Associated
Press ’88–’90

730 MB 242,918 50–200

WT10g TREC Web
collection

11 GB 1,692,096 451–550

GOV2 2004 crawl of
.gov domain

427 GB 25,205,179 701–750

Table 2: Overview of TREC collections and topics.

To put it all into perspective, the CACM collection used
in previous experiments is 1.4MB and consists of 3204 docu-
ments, whereas the Wall Street Journal collection is 512MB
and consists of 173,252 documents, and the GOV2 collec-
tion, a crawl of the entire .gov web domain that was used
in the TREC 2004 Terabyte Track, is 427GB and consists
of approximately 25 million documents. Table 2 provides a
summary of the TREC collections and topics used.
All experiments make use of the Indri search engine [11].

Documents are stemmed using the Porter stemmer, but not
stopped at index time. Instead, stopping is done at query
time using a standard list of 421 stopwords. Only the title
portion of the TREC topics are considered. The newswire
queries are typically longer than the short, keyword-based
web queries.
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AP WSJ WT10g GOV2
AvgP 0.1775 0.2592 0.2032 0.2502

P @ 10 0.2912 0.4327 0.2866 0.4837
µ 3000 3500 4000 4000

Table 3: Full independence variant results.

3.1 Full Independence
For a fixed query, the full independence variant takes the

form of the model given in Figure 1(left). Since the graph
only consists of cliques containing a single query term and
the document node, all of the cliques are only members of
the set T , and therefore we set λO = λU = 0, which implies
that λT = 1. Therefore, our ranking function is of the form:

PΛ(D|Q)
rank
=

∑
c∈T

fT (c)

=
∑
c∈T

log

[
(1 − αD)

tfqi,D

|D| + αD
cfqi

|C|
]

rank
=

∏
c∈T

[
(1 − αD)

tfqi,D

|D| + αD
cfqi

|C|
]

which shows the full independence model using the given
features reduces to the language modeling approach to in-
formation retrieval under the assumption of a uniform docu-
ment prior (i.e. P (D|Q) ∝ P (Q|D)P (D)). We assume that
αD = µ

µ+|D| , which is the form of the well-known Dirichlet

smoothing [26].
Table 3 shows the results for the full independence model.

In the table, AvgP refers to mean average precision, P@10
is precision at 10 ranked documents, and µ denotes the
smoothing parameter used. The smoothing parameters were
tuned to maximize mean average precision. The values found
here are used throughout the remainder of the experiments.
The full independence results provide a baseline from which
to compare the sequential and full dependence variants of
the model.

3.2 Sequential Dependence
The graphical form of the sequential dependence variant

is shown in Figure 1(center). This variant models dependen-
cies between adjacent query terms. Models of this form have
cliques in T , O, and U , as defined previously, and therefore
make use of the three feature functions. However, the un-
ordered feature function, fU , has a free parameter N that
allows the size of the unordered window (scope of proxim-
ity) to vary. Previous research has suggested various choices
for the window size. Fagan shows that the best choice of N
varies across collections [3]. Optimal values found included
setting N to 2, the length of a sentence, or “unlimited”
(matches any co-occurrences of the terms within a docu-
ment). Croft et. al. showed improvements could be achieved
with passage-sized windows of 50 terms [2]. Therefore, we
explore window sizes of 2, 50, sentence, and “unlimited”
to see what impact they have on effectiveness. Instead of
segmenting sentences at index time, we observe that the av-
erage length of an English sentence is 8-15 terms, and choose
a window size of 8 terms to model sentence-level proximity.
The results are given in Table 4. For each window size,

the model parameters are trained on the same collection as
they are tested to provide an idea of the best performance
possible. The results show very little difference across the
various window sizes. However, for the AP, WT10g, and

Length AP WSJ WT10g GOV2
2 0.1860 0.2776 0.2148 0.2697
8 0.1867 0.2763 0.2167 0.2832
50 0.1858 0.2766 0.2154 0.2817

Unlimited 0.1857 0.2759 0.2138 0.2714

Table 4: Mean average precision for various un-
ordered window lengths with the sequential depen-
dence variant.

GOV2 collection the sentence-sized windows performed the
best. For the WSJ collection, N = 2 performed the best.
The only collection where mean average precision varies no-
ticeably is the GOV2 collection. These results suggest that
a limited scope of proximity (2-50 terms) performs reason-
ably, but can be approximated rather well by an “unlimited”
scope, which reaffirms past research into dependence mod-
els based on co-occurrences. However, it appears as though
smaller scopes of proximity may provide better performance
for larger collections, as evidenced by the GOV2 results. Fi-
nally, for every collection and every scope of proximity, the
sequential dependence variant outperforms the full indepen-
dence variant.

3.3 Full Dependence
The full dependence model, shown in Figure 1(right), at-

tempts to incorporate dependencies between every subset of
query terms, and thus also consists of cliques in T , O and U .
The number of cliques is exponential in the number of query
terms which limits the application of this variant to shorter
queries. For this variant, we adaptively set the parameter
N in the feature function fU to be four times the number of
query terms in the clique c.
In the previous experiments we tested on the training set,

which allowed us to determine an upper bound on perfor-
mance, but it is not a realistic setting. Therefore, for the full
dependence model, we train on each collection and then use
the parameter values found to test on the other collections.
In addition, we analyze the impact ordered and unordered
window feature functions have on effectiveness. Results for
models trained using terms and ordered features, terms and
unordered features, and terms, ordered, and unordered fea-
tures are given in Table 5.
For the AP collection, there is very little difference be-

tween using ordered and unordered features. However, there
is a marginal increase when both ordered and unordered fea-
tures are used together. The results for the WSJ collection
are different. For that collection, the ordered features pro-
duce a clear improvement over the unordered features, but
there is very little difference between using ordered features
and the combination of ordered and unordered. The results
for the two web collections, WT10g and GOV2, are simi-
lar. In both, unordered features perform better better than
ordered features, but the combination of both ordered and
unordered features led to noticeable improvements in mean
average precision.
From these results we can conclude that strict match-

ing via ordered window features is more important for the
smaller newswire collections. This may be due to the ho-
mogeneous, clean nature of the documents, where an or-
dered window match is likely to be a high quality match
instead of noise. For the web collections, the opposite is
true. Here, the fuzzy unordered window matches provide
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Term + Ordered Term + Unordered Term + Ordered + Unordered
Train \ Test AP WSJ WT10g GOV2 AP WSJ WT10g GOV2 AP WSJ WT10g GOV2

AP 0.1847 0.2718 0.2180 0.2669 0.1840 0.2674 0.2179 0.2754 0.1866 0.2716 0.2226 0.2839
WSJ 0.1842 0.2733 0.2167 0.2613 0.1840 0.2674 0.2179 0.2754 0.1841 0.2738 0.2195 0.2694

WT10g 0.1847 0.2718 0.2180 0.2669 0.1838 0.2674 0.2189 0.2783 0.1865 0.2719 0.2231 0.2783
GOV2 0.1840 0.2705 0.2150 0.2675 0.1838 0.2674 0.2189 0.2783 0.1852 0.2709 0.2201 0.2844

Table 5: Mean average precision using the full dependence variant over different combinations of term,
ordered, and unordered features.

better evidence. In these less homogeneous, noisy collec-
tions, an ordered window match is less likely to be a high
quality match and more likely to be a noisy match. Instead,
fuzzy matches are appropriate because they deal better with
the noise inherent in web documents.
These results also suggest that parameters trained on any

of the collections generalize well to other collections. This re-
sult is somewhat surprising; we expected parameters trained
on newswire (web) data would generalize better to newswire
(web) test data. However, this is not the case. It appears as
though the parameters trained on any reasonable collection
will generalize well, which allows one to use a single setting
of the parameters across multiple collections. This may im-
ply that the features used here only capture general aspects
of the text. More domain-specific features may yield further
improvements.

3.4 Summary of Results
We now briefly summarize and compare the results across

the model variants. Table 6 gives mean average precision,
precision at 10, and suggested model parameters for each
variant. The results given use the optimal parameter val-
ues to allow a fair comparison. Both the sequential and
full dependence variants significantly improve mean average
precision over the full independence variant for all four col-
lections. Therefore, modeling dependencies between terms
can be done consistently and can result in significant im-
provements. We also note the considerable improvements
on the WT10g and GOV2 collections. These improvements
support our hypothesis that dependence models may yield
larger improvements for large collections. As further evi-
dence of the power of these models on large collections, we
note that a slightly modified version of the full dependence
variant of this model was the best automatic, title-only run
at the 2004 TREC Terabyte Track [11]. Although not ex-
plored here, the P@10 results could likely be significantly
improved by directly maximizing over the P@10 metric.

4. CONCLUSIONS
In this paper we develop a general term dependence model

that can make use of arbitrary text features. Three variants
of the model are described, where each captures different
dependencies between query terms. The full independence
variant assumes that query terms are independent. The se-
quential dependence variant assumes certain dependencies
exist between adjacent query terms, which is akin to bigram
and biterm language models [20, 21]. Finally, the full de-
pendence model makes no independence assumptions and
attempts to capture dependencies that exist between every
subset of query terms.
Our results show that modeling dependencies can signifi-

cantly improve retrieval effectiveness across a range of collec-
tions. In particular, the sequential dependence variant us-

ing term and ordered features is more effective on smaller,
homogeneous collections with longer queries, whereas the
full dependence variant is best for larger, less homogeneous
collections with shorter queries. In all cases, however, the
sequential dependence variant closely approximates the full
dependence variant. This provides the ability to tradeoff
effectiveness for efficiency.
We note that our model shares some similarities, such

as the exponential form, with the maximum entropy model
presented by Nallapati [14], but is fundamentally different.
The maximum entropy model, like our model, can make
use of arbitrary text features. However, since the model is
discriminative, it can only be used to rank documents ac-
cording to P (R = 1|Q,D). Our model foregoes explicitly
modeling relevance, but instead models the joint probabil-
ity over queries and documents. Thus, with our model we
can not only compute PΛ(D|Q) to rank documents by, but
also PΛ(Q|D), which can be used for query expansion. For
example, suppose D represents a document or a set of docu-
ments known to be relevant, then we can expand a query by
Q̂ = argmax P (Q|D). This is a possible direction of future
work. In addition, we attempted to use our features within
the maximum entropy model. We trained the model using
maximum likelihood estimation. The trained models, when
tested on other collections, performed significantly worse
than the baseline full independence model, which again sup-
ports our case for training by directly maximizing the mean
average precision. Finally, we note that our model can easily
be reformulated as a conditional random field [7], although
we feel such a formulation does not add anything to the
model.
Other directions of possible future work include exploring

a wider range of potential functions, applying the model to
other retrieval tasks, exploring different training methods
including the use of clickthrough data, and constructing the
graph G in other ways. For example, one could compute
the EMIM between all pairs of query terms and only choose
to model dependencies between terms with a high EMIM
value. Or, similarly, one could apply the link approach taken
in [5] to determine the important dependencies to model for
a given query.
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