
Inf Retrieval (2007) 10:257–274
DOI 10.1007/s10791-006-9019-z

Linear feature-based models for information retrieval

Donald Metzler · W. Bruce Croft

Received: 6 October 2005 / Accepted: 27 October 2006 /
Published online: 9 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract There have been a number of linear, feature-based models proposed by the
information retrieval community recently. Although each model is presented differently,
they all share a common underlying framework. In this paper, we explore and discuss the
theoretical issues of this framework, including a novel look at the parameter space. We
then detail supervised training algorithms that directly maximize the evaluation metric under
consideration, such as mean average precision. We present results that show training models
in this way can lead to significantly better test set performance compared to other training
methods that do not directly maximize the metric. Finally, we show that linear feature-based
models can consistently and significantly outperform current state-of-the-art retrieval models
with the correct choice of features.

Keywords Retrieval models . Linear models . Features . Direct maximization

1 Introduction

Features lie at the very heart of information retrieval. The two features term frequency and
inverse document frequency form the core of most modern retrieval models, including BM25
(Robertson et al., 1995) and language modeling (Ponte and Croft, 1998). In most cases, the
only difference between any two models is how these elementary features are combined.
The resulting scoring functions are often nonlinear and contain one or more free parameters
that can be tuned in various ways.

Since most models are built upon some underlying theoretical framework, it is not always
possible to easily incorporate new features. For example, it proved nontrivial to include query-
independent features such as PageRank and inlink count into the BM25 ranking formula
(Craswell et al., 2005). Therefore, a model that can handle arbitrary query-dependent and
query-independent features is desirable.

D. Metzler (�) · W. Bruce Croft
University of Massachusetts, Amherst, MA, USA

Springer

258 Inf Retrieval (2007) 10:257–274

In this paper, we describe the theory behind a class of models we call linear feature-
based models. As its name implies, the model’s scoring function is comprised of a linear
combination of features. One of the main benefits of such models is their ability to combine
many different kinds of features in a straightforward manner. There have been many models
proposed that fall under this general framework. The models include, but are not limited to,
Gey’s logistic regression model (Gey, 1994), Nallapati’s discriminative model (Nallapati,
2004), Gao et al.’s linear discriminate model (Gao et al., 2005), and Metzler and Croft’s
dependence model (Metzler and Croft, 2005). More details of these models are given in
Section 3.

The goal of this paper, therefore, is to bring together the ideas of these papers and present
details of the general framework they all fall under. This includes investigating what scoring
functions fit into the framework, the characteristics of the underlying parameter space, and
how the model parameters can be effectively estimated. Empirical results are given that
show that a linear feature-based model using simple bag of words features and trained using
the methods discussed in this paper is capable of outperforming a state-of-the-art retrieval
model. Finally, results from a model using a more complex set of features based on term
proximity information are presented that show consistent and significant improvements over
a strong language modeling baseline, which shows the true power of the model.

The remainder of this paper proceeds as follows. In Section 2, the theoretical details
of the framework are given, followed by a look at a range of related work in Section 3.
Experimental results using both simple and more complex features are provided in Section 4.
Finally, Section 5 concludes and summarizes the work presented in the paper.

2 Linear feature-based models

This section provides a general description of linear feature-based models, discusses the
parameter space, and describes supervised methods for estimating the model parameters.

2.1 Description

Suppose we are given a set of documents D, queries Q = {Qi }N
i=1, and training data T .

In addition, we are given a real-valued scoring function S�(D; Q) parameterized by �, a
vector of parameters. Given a query Qi , the scoring function S�(D; Qi) is computed for
each D ∈ D and documents are then ranked in descending order according to their score.

The scoring function induces a total ordering1 (ranking) R(D, Qi , S�) on D for each
query Qi . For simplicity, we rewrite R(D, Qi , S�) as Ri (�) and let R� = {Ri (�)}N

i=1 be
the set of rankings induced over all of the queries.

Finally, in order to evaluate a parameter setting, we need an evaluation function E(R�; T)
that produces real-valued output given a set of ranked lists and the training data. It should
be noted that we require E to only consider the document rankings and not the document
scores. The scores are only used to rank the documents and not used to evaluate the ranking.
This is a standard characteristic among information retrieval evaluation metrics such as mean
average precision, precision at 10, among others.

1 We assume ties are broken by document id.

Springer

Inf Retrieval (2007) 10:257–274 259

Therefore, our goal is to find the parameter setting � that maximizes the evaluation metric
E over the parameter space. Formally, this can be stated as:

�̂ = arg max
�

E(R�; T)

s.t. R� ∼ S�(D; Q)

� ∈ M�

where R� ∼ S�(D; Q) denotes that the orderings in R� are induced using scoring function
S, and M� is the parameter space over �.

Rather than tackle the general optimization problem proposed earlier, we aim to solve
a more constrained version. We restrict our focus to scoring functions from the following
family:

S = {S�(D; Q) : ∃l(·) s.t. l is strictly monotonically increasing and

l(S�(D; Q)) = �T f (D, Q) + Z}

where f (·, ·) is a feature function that maps query/document pairs to real-valued vectors in
R

d , Z is a constant that does not depend on D (but may depend on � or Q). That is, we
require there to exist some strictly monotonically increasing function l that, when applied to
S, yields a function that is linear in our parameters �. The ranking functions in S define the
universe of linear feature-based models.

Examples of functions within this family include linear discriminants, such as those
used with perceptrons, Support Vector Machines (SVMs) (Burges, 1998), and the so-called
maximum entropy distribution (Pietra et al., 1997). In addition, many information retrieval
ranking functions proposed in the past, at their very core, also live within this family (e.g.,
Gey, 1994; Nallapati, 2004; Gao et al., 2005; Metzler and Croft, 2005).

By definition, every S ∈ S can be reduced to a linear form via a strictly monotonically
increasing function. Since such functions are rank preserving and subsequently evaluation
metric preserving, we can always write the optimization problem for any scoring function in
S as:

�̂ = arg max
�

E(R�; T)

s.t. R� ∼ �T f (D, Q) + Z

� ∈ M�.

This general optimization problem fully describes how documents are ranked and how
the parameters are estimated. We see that linear feature-based models are instantiated by
choosing an evaluation function E, training data T , features f, and a parameter space M�.
We now describe the details and theory underlying each of these aspects.

2.2 Parameter space

Thus far we have only talked abstractly about the parameter space M�. There are many
potential ways to choose a parameter space, each with its advantages and disadvantages.
The most obvious choice, to not constrain the parameter space, occurs when M� = R

d . The

Springer

260 Inf Retrieval (2007) 10:257–274

advantage of this model is that the parameter weights can be either negative or positive. This
allows the model to include features that convey both negative and positive evidence. On the
downside, the search space is somewhat daunting, although not unmanageable.

Another option is to restrict the parameter values to be nonnegative. Although this may
seem too strict, there are several reasons why it is an acceptable assumption in most cases. In
information retrieval, a majority of the features commonly used provide positive evidence.
For example, large tf or idf values are evidence in support of relevance. If a feature is
known a priori to provide negative evidence, then the feature can still be used, with its
value negated. If we do not know if a feature provides positive or negative evidence and we
“guess” incorrectly, then the trained model will simply assign that feature a weight of 0. If
this occurs, the feature value can be adjusted accordingly and the model retrained.

Therefore, the positivity constraint will typically have only a minor impact on the model.
As we will now show, several nice results can be shown to hold under this assumption.
Hence, for the remainder of this section, we assume that M� = R

d
+

def= {� ∈ R
d : λi ≥ 0}.

2.2.1 Reduction to multinomial manifold

Only considering positive parameter values allows us to map our problem onto a more intu-
itively appealing space with several nice characteristics. We will now show that the parameter
estimation problem previously described, under the positivity constraint, is equivalent to the
following constrained optimization problem:

�̂ = arg max
�

E(R�; T)

s.t. R� ∼ �T f (D, Q) + Z

� ∈ P
d−1

where P
k is a multinomial manifold (also known as a k-simplex) described by:

P
k =

{
� ∈ R

k+1 : ∀ j θ j ≥ 0,

k+1∑
i=1

θi = 1

}

The multinomial manifold P
k can be intuitively thought of as the space of all multinomial

distributions over k + 1 potential outcomes. We now give proof of this equivalence.

Theorem. Any solution to the optimization problem over R
d
+ has a rank-equivalent solution

to the optimization over P
d−1.

Proof: Suppose that �̂ ∈ R
d
+ is the solution to the original optimization problem. Now,

consider the following transformation of �̂ to �̂:

θ̂i = λ̂i

W

where W = ∑
i λ̂i . If W = 0, then λi is mapped to θi = 1

d for all i, which is the uniform
distribution.

Springer

Inf Retrieval (2007) 10:257–274 261

It is easy to see that the transformed parameter setting �̂ is in P
d−1, and thus the trans-

formation maps the original point onto the manifold. We must now show this transformation
preserves rank-equivalence. Under �̂, the scoring function becomes:

S�̂(D; Q) =
∑

i

θ̂i f (D, Q)i + Z

=
∑

i

(
λ̂i

W

)
f (D, Q)i + Z

= 1

W

∑
i

λ̂i f (D, Q)i + Z

rank=
∑

i

λ̂i f (D, Q)i

where the last step follows from the fact that scaling (by 1
W) and translating (by Z) all

scores in the same way has no effect on ranking. Thus, the model under the transformed
parameter �̂ ranks documents exactly the same as using �̂, the original parameter value.
We have therefore shown that any solution to the problem over R

d
+ can be transformed into

a rank-equivalent solution over P
d , thus completing the proof. �

It can be shown that this is a many-to-one, onto mapping. This suggests that our original
parameter space is inefficient, in that many (in fact, infinitely many) points within the space
produce the same ranking. Within the new space, all of these redundant points are conflated
to a single point. Although not explored here, this knowledge can potentially be used to
implement more efficient or intelligent parameter estimation techniques.

2.2.2 Rank equivalence

We now show that the reduction to the multinomial manifold has an interesting connection
with the notion of rank equivalence. Given two parameter settings of a linear, feature-based
model, �1 and �2, with a fixed set of features, we define the binary relation “ ∼ ” as:
�1 ∼ �2 if and only if �1 and �2, under the model, are guaranteed to produce the same
ranking for all queries. That is, “ ∼ ” is the binary relation corresponding to rank equivalence
between two parameter settings.

It is easy to see that “ ∼ ” is an equivalence relation as it is reflexive (� ∼ �), symmetric
(�1 ∼ �2 ⇒ �2 ∼ �1), and transitive (�1 ∼ �2 ∧ �2 ∼ �3 ⇒ �1 ∼ �3). It therefore
induces equivalence classes over the original Euclidean parameter space. In fact, every
parameter on the multinomial manifold corresponds to a unique equivalence class. Therefore,
the set of parameters on the multinomial manifold can be thought of as canonical parameters
that can be used to describe any possible parameter setting.

2.2.3 Distance between models

Our reduction provides another unique mechanism that is not available in most other retrieval
models. The reduction allows us, for a fixed set of features, to quantitatively measure the
distance between two models (i.e., two parameter settings). For the BM25 retrieval model,
there is no straightforward way of measuring the distance between two parameter settings.

Springer

262 Inf Retrieval (2007) 10:257–274

In language modeling, there exists the notion of distance in terms of KL-divergence between
two models (Lafferty and Zhai, 2001), but it is not the same as the distance we can compute
here. Instead, we can compute the distance between the actual scoring functions themselves.

Within this framework, how can we compute the distance between two parameter vectors
which live in R

d? The naive solution is to use the Euclidean distance between the two
vectors. However, this leads to unappealing results. For example, consider the following two
parameter vectors in R

2:

�1 =
[

1
3

]
, �2 =

[
2
6

]

The Euclidean distance between these two vectors is
√

10, despite the fact that the two
parameter settings produce precisely the same ranking. Therefore, the intuitive distance
between these two parameter settings is 0. Now, suppose we apply the mapping to the
multinomial manifold (P

1), that was defined above, to these two points. The mapped points
can be shown to be:

�1 =
[

0.25
0.75

]
, �2 =

[
0.25
0.75

]
.

Both of the original parameters are mapped to the same point in P
1, and thus they have

no distance between them. Now that it is clear the manifold better captures the intrinsic
properties of the parameters, we still have to answer the question of how to properly measure
the distance between arbitrary points on the manifold. Results from information geometry
tell us that the multinomial manifold follows a non-Euclidean geometry, and therefore the
Euclidean distance does not hold. Thus, we must use a more appropriate distance metric,
known as the geodesic distance, which is a generalization of the Euclidean distance to
non-Euclidean geometries. The geodesic distance between two points in P

d is computed as:

d(�,�′) = 2 arccos

(
d+1∑

i

√
θiθ

′
i

)

where d(·, ·) ranges from 0 to π . Although we do not explore specific applications of this
distance in this paper, a great deal of work considering various properties of the multinomial
manifold exists (Lebanon and Lafferty, 2004; Zhang et al., 2005). Future applications may
find uses for this unique property.

We also note that the cosine distance is an equally valid measure of the distance between
two linear feature-based parameter settings. However, it is less theoretically motivated in
terms of the underlying intrinsic geometry of the parameter space.

Finally, it is important to state again that the properties discussed in this section are only
valid if the parameters are constrained to be nonnegative. We feel the theoretical benefits
gained by imposing the constraint outweigh any potential disadvantages.

2.3 Parameter estimation

Ranking large sets of documents is inherently important in information retrieval. Most state-
of-the-art machine learning approaches cannot efficiently handle the large data sets used, the
highly unbalanced nature of the training data, or the nonstandard evaluation metrics. Since

Springer

Inf Retrieval (2007) 10:257–274 263

the end goal of most systems is to maximize some evaluation metric based on the rankings
produced, we focus on approaches that directly maximize the evaluation metric by solving
the optimization presented in Section 2.

Several models proposed in the past have performed parameter estimation via maximiza-
tion of likelihood or maximization of margin. However, these approaches are inherently
maximizing the incorrect metric. Information retrieval is typically not concerned with like-
lihood, nor classification accuracy. Instead, it is entirely concerned with how well a model
ranks documents. It can be argued that estimating parameters by maximizing the likelihood
of some training data or minimizing classification error is optimizing a function that is cor-
related with the underlying retrieval metric, such as mean average precision. However, this
has been shown experimentally to be invalid and it can also be shown theoretically to be
invalid, as well. This is known as metric divergence (Morgan et al., 2004).

The remainder of this section describes approaches for directly maximizing evaluation
metrics. These techniques can easily handle large training sets, such as those that typically
arise in information retrieval. They can also handle the highly unbalanced nature of the
training data. Although these techniques have nice properties, they also have several pitfalls,
as we will show.

2.3.1 Grid search

The most naive approach to solving the optimization problem is to perform an exhaustive
grid search over the parameter space. That is, we place a grid over the parameter space and
evaluate E(R�; T) at every grid intersection, outputting the parameter setting that yields the
maximum at the end.

A grid search over R
d is unbounded and ill-defined. For this reason, we restrict our

discussion to the case where our parameter space is the multinomial manifold. For this case,
the grid search is bounded and can be easily implemented.

Given a parameter ε = 1
K for K ∈ Z

+ that controls how fine grained our grid is, we
define:

G =
{
� = (k1ε . . . kdε) :

∑
i

kiε = 1, ki ∈ N

}

=
{
� = (k1ε . . . kdε) :

∑
i

ki = K , ki ∈ N

}
.

As we see, |G|, the number of parameter values we must evaluate E at, depends both on d (the
number of parameters) and K (how fine grained our grid is). A grid search is feasible only
if both d and K are relatively small. For larger values, we must turn to more sophisticated
training methods. However, we should note that the grid search method has the nice property
that it is guaranteed to find a global maximum as K gets large. This allows exact global
convergence to be traded off for faster training time.

2.3.2 Coordinate ascent

Coordinate ascent is a commonly used optimization technique for unconstrained optimization
problems. The algorithm iteratively optimizes a multivariate objective function by solving
a series of one-dimensional searches. It repeatedly cycles through each parameter, holding

Springer

264 Inf Retrieval (2007) 10:257–274

all other parameters fixed, and optimizes over the free parameter. The technique is known to
converge slowly on objective functions with long ridges. Variations of the method, including
Powell’s method, have been proposed to overcome this issue (Press et al., 1992).

Coordinate ascent can be applied to the optimization problem under consideration re-
gardless of whether we choose to optimize in the original Euclidean parameter space (Rd)
or the mapped multinomial parameter space (P

d−1). Optimizing over the manifold may be
beneficial due to the reduction in the number of repeated local extrema. This may be partic-
ularly useful when estimating gradients using finite differences while performing coordinate
ascent over a nondifferentiable metric surface.

If coordinate ascent is performed over the multinomial manifold, then only a minor
modification to the original algorithm is necessary. All one-dimensional searches done by
the algorithm will be performed as if they were being done in R

d . However, this does not
ensure that the updated parameter estimate will be a point on the manifold. Therefore, after a
step is taken in R

d , we project the point back onto the manifold, which we showed is always
possible. Note that this projection preserves the function value since the unnormalized and
projected parameter estimates lead to equivalent rankings. Therefore, the optimization is
implicitly being done in a space that we know how to optimize over (R

d), but is continually
being projected back onto the manifold.

More concretely, suppose that λi is the current free parameter and all other parameters
are held fixed. Then, the update rule is given by:

λ′
i = arg max

λi

E(R�; T)

After λ′
i is updated, the entire parameter vector is then projected back onto the manifold.

This process is performed iteratively over all parameters until some convergence criteria is
met.

If the parameter space is not constrained to be nonnegative, then search via coordinate
ascent is still possible. However, the entire search must be done in R

d . The algorithm is
applied exactly as described, except the parameter setting no longer has to be projected.

Finally, we note that if E is partially differentiable with respect to each parameter then
the update rule is straightforward. For those functions where E is not partially differentiable,
such as the ones considered in the remainder of this paper, a line search must be done to find
the arg max.

2.3.3 Other methods

There also exist a number of other training techniques that attempt to directly maximize
metrics related to information retrieval. One method proposed to optimize for mean average
precision uses a perceptron-based algorithm (Gao et al., 2005). This approach, like the
coordinate ascent approach, is not guaranteed to find a global maxima. Instead, it can be
shown to be optimizing a lower bound on mean average precision.

Another approach, based on neural networks, called RankNet, has recently been proposed
(Burges et al., 2005). A RankNet is trained using gradient descent over a differentiable cost
function. This allows gradients to be computed easily. However, the model suffers from
standard neural network training issues, such as local minima. In addition, the cost function
is general and does not correspond to any specific information retrieval metric. Therefore, it
is not clear how to train the model to maximize different metrics. Recent work has looked at
addressing some of the issues involved in training a RankNet (Matveeva et al., 2006).

Springer

Inf Retrieval (2007) 10:257–274 265

Finally, Joachims has developed large margin training techniques for multivariate per-
formance measures (Joachims, 2005). Using these techniques it is possible to directly max-
imize a variety of information retrieval metrics, such as precision at k, precision-recall
breakeven, and area under the ROC curve. In fact, any metric that can be computed based
solely on a contingency table can be efficiently maximized. However, metrics such as
mean average precision, which cannot be computed using a contingency table, cannot be
used.

The downside of most of these approaches is that they specifically work for one metric
or a family of metrics, and not for arbitrary metrics. The grid search and coordinate ascent
algorithms, however, do not have this problem.

There currently is no well-developed understanding of best practice training techniques
for linear feature-based information retrieval models. Most studies in the area have looked
at traditional machine learning problems, which typically differ from information retrieval
tasks. Therefore, an interesting, and necessary, direction of future work is to undertake a
comprehensive evaluation of these techniques, in terms of how effective they are across a
wide range of retrieval data sets and metrics, how well they generalize, and how efficient
they are.

2.3.4 Discussion

Finding the maximum of an arbitrary evaluation function E can be very difficult, especially
in high-dimensional space. Only a grid search method, with a suitably chosen granularity, is
guaranteed to find a global maxima. Coordinate ascent is a local search technique that is only
guaranteed to find a global maxima if the evaluation function E is concave. Our experiments
using this approach, as will be discussed in Section 4, show that, for a certain set of term
and phrase features, mean average precision is approximately concave over a wide range
of collections. This may be the case for many related applications and feature sets, but is
not true in general, as was pointed out in Gao et al. (2005). For functions with many local
maxima, a multiple random restart strategy can be used to increase the chances of finding a
global solution. Throughout the remainder of this work, all optimization is carried out using
coordinate ascent with 10 random restarts.

2.4 Training data

We have thus far glossed over the form of T , the training data. The general framework allows
T to be any type of data that can be used to compute the evaluation metric E over a set of
ranked lists. For example, this data may come in the form of TREC relevance judgments or
Web clickthrough data (Joachims, 2002; Joachims et al., 2005). To estimate the parameters
we only need to evaluate E, so models may even use abstract concepts in place of T , such
as novelty (Harman, 2004) or aspect precision/recall (Zhai, 2002), as long as E remains
independent of the document scores.

One disadvantage of the models presented here is that they require some form of training
data to get a parameter estimate. If little or no training data exists, then unsupervised and
active learning (Shen and Zhai, 2005) techniques from machine learning can potentially be
employed. However, such methods are out of the scope of the current work.

Springer

266 Inf Retrieval (2007) 10:257–274

2.5 Features

In this section we take a brief look at features. Although not the focus of this paper, we feel
it is important to provide a sketch of the types of features that may be useful in a linear
feature-based model.

After decades of research, there are a surprisingly small number of features that have
proven to be useful as the basis of retrieval models. The following are the most commonly
used features:

– Term occurrence/nonoccurrence—whether or not a term occurs within a document
– Term frequency—the number of times a term occurs within a document
– Inverse document frequency—inverse of the proportion of documents that contain a given

term
– Document length—number of terms within the document
– Term proximity—occurrence patterns of terms within a document

Almost every major retrieval model that has been developed has been based on one or more
of these features. We refer to these as primitive textual features. They can be thought of as
building blocks that can be used to construct more complex ranking functions.

In addition, there are high-level textual features that are combinations of the primitive
textual feature. Examples of these features are the term weighting functions used by BM25,
language modeling, and most other popular retrieval models.

Some feature functions may have hyperparameters. For example, the BM25 model is
typically parameterized to have two hyperparameters, k1 and b. In linear feature-based
models, hyperparameters are not part of the model, but of the features themselves. Therefore,
hyperparameters must either be fixed before training or adapted in some way during training.

Finally, there exist nontextual features. These features are typically task-specific and often
exploit knowledge about the domain or problem structure. Examples of these features are
PageRank (Brin and Page, 1998), URL depth (Kraaij et al., 2002), document quality (Zhou
and Croft, 2005), readability (Si and Callan, 2001), sentiment (Pang et al., 2002), and query
clarity (Cronen-Townsend et al., 2002).

Of course, the list of features presented here is by no means complete. As new and useful
features are discovered, linear feature-based models provide a simple, convenient framework
for combining them.

3 Related work

Many models proposed in the past, at their very core, are linear feature-based models (Gey,
1994; Nallapati, 2004; Gao et al., 2005; Metzler and Croft, 2005). The models typically
differ in their formulation, features, or training. This section briefly summarizes several of
these models.

In 1994, Gey proposed a logistic regression model for information retrieval (Gey, 1994).
In terms of our discussion earlier, the scoring function is in S after application of the rank-
preserving logit transformation and thus is a linear feature-based model. In the model, six
features were used. The features were query absolute frequency, query relative frequency,
document absolute frequency, document relative frequency, idf, and relative frequency in all
documents. The maximum likelihood estimate was used for the parameters. Results showed
mixed improvements over a vector space baseline when trained on one collection and tested
on another.

Springer

Inf Retrieval (2007) 10:257–274 267

Table 1 Features used in the bag of words experiments

Feature Feature

1
∑

w∈Q∩D log(t fw,D) 4
∑

w∈Q∩D log(|C |
c fw

)

2
∑

w∈Q∩D log(1 + t fw,D
|D|) 5

∑
w∈Q∩D log(1 + t fw,D

|D|
N

d fw
)

3
∑

w∈Q∩D log(N
d fw

) 6
∑

w∈Q∩D log(1 + t fw,D
|D|

|C |
c fw

)

t fw,D is the number of times term w occurs in document D, c fw is the number
of times term w occurs in the entire collection, d fw is the number of documents
term w occurs in, |D| is the length (in terms) of document D, |C | is the length
(in terms) of the collection, and N is the number of documents in the collection.

In Nallapati (2004), Nallapati argued for a discriminative model for information retrieval,
focusing in particular on an SVM formulation. Like Gey, Nallapati also made use of six
features. Table 1 shows the six features considered. In this case, the parameter vector is esti-
mated by training a linear SVM, with relevant documents considered the “positive class” and
nonrelevant documents the “negative class.” Therefore, the ranking task is treated as a classi-
fication problem. Results were mixed when compared against a language modeling baseline.

When training using maximum likelihood or SVMs, it is often important to have balanced
training data. However, in information retrieval, it is very often the case that there are many
more relevant documents compared to nonrelevant documents for a given query. For this
reason, the training data is very unbalanced. Nallapati found that the data needed to be
balanced in order to achieve good generalization performance. Balancing was done by
undersampling the majority (nonrelevant) class. Although this led to improved performance
over the unbalanced case, it had the negative effect of throwing away valuable training data.
Other solutions to the unbalanced data problem for SVMs exist that do not require training
data to be compromised, such as allowing separate costs for training errors in the positive and
negative classes (Morik et al., 1999). We note that the coordinate ascent method discussed
in this paper does not suffer from this problem and can use the training data in its entirety.

Nearly simultaneously, Gao et al. (2005) and Metzler and Croft (2005) described ranking
functions that are linear feature-based models similar in spirit to those of Gey and Nallapati,
but trained their models by directly maximizing mean average precision. Although the two
models are presented differently, at their very core they are very similar, the main difference
being the features used. Both models went beyond the simplistic bag of words features
used by Gey and Nallapati and used powerful phrase-based features that led to significant
improvements in effectiveness over baseline systems. Experimental results and details of
the features used in Metzler and Croft (2005) are given in the next section. The success of
these models, compared to the mixed results of Gey and Nallapati, suggest the importance
of proper training and feature selection.

4 Experiments

This section describes experiments carried out using the framework described in this work
on a number of ad hoc retrieval experiments. These particular experiments were chosen to
empirically show that training by directly maximizing mean average precision is superior
to an SVM trained model and that combining richer features within a linear feature-based
model can consistently and significantly outperform traditional retrieval models.

The goal of ad hoc retrieval is to retrieve as many relevant documents as high in the
ranked list as possible. Relevance is binary (relevant/nonrelevant) and is assessed according

Springer

268 Inf Retrieval (2007) 10:257–274

Table 2 Summary of TREC collections used in bag of words experiments

Disks 1,2 Disk 3 Disks 4,5

Num. docs 741,856 336,310 556,077
Training topics 101–150 51–100 301–350
Test topics 151–200 101–150 401–450

to whether the document is topically related to the query or not. In all of our experiments,
we make use of TREC data, which consists of a set of topics (queries) and a set of human
relevance judgments for each topic. Given a ranking of documents in response to a query,
we compute the average precision for each query to evaluate our ranking (Baeza-Yates and
Navarro, 1999). As is typically done, we compute the mean of the average precisions over
all of the queries (mean average precision) and use this as our primary evaluation metric.

4.1 Bag of words features

We first compare a linear feature-based model trained by directly maximizing mean average
precision, Nallapati’s SVM model (Nallapati, 2004), and a language modeling system (Ponte
and Croft, 1998). Three standard newswire TREC collections are used. For each collection,
50 topics (queries) are used for training and 50 for testing. Only the title portion of the TREC
topics are used. All documents are stemmed using Krovetz Stemmer and stopped using a
standard list of common terms. A summary of the collections used and the training and test
topics are given in Table 2.

For these experiments, E = mean average precision, T = TREC relevance judgments, f
= bag of words features (see Table 1), and M� = R

d . Each model is trained using only the
data in the relevance judgments. That is, when the model is being trained it only “knows”
about the documents contained in the relevance judgments and not about any of the unjudged
documents in the collection. However, when being tested, all documents in the collection
are ranked. In the case of the balanced SVM model, the nonrelevant judgments from the
relevance file were undersampled. The feature-based model is trained using the same features
as the SVM, and therefore has no additional power. The language modeling system ranks
documents via query likelihood, with document models estimated using Bayesian (Dirichlet)
smoothing (Zhai and Laffertys, 2001) and is trained by finding the smoothing parameter that
maximizes the mean average precision on the training data.

The results of the experiments are given in Table 3. As we see from the results, our
parameter estimation technique based on coordinate ascent consistently leads to statistically
significant improvements over the SVM estimates. Furthermore, it significantly outperforms
language modeling on four out of six runs. Language modeling, however, significantly
outperforms the SVM model on four out of the six runs.

The results indicate that language modeling, despite its simplicity, stands up very well
compared to sophisticated feature-based machine learning techniques. The results also pro-
vide empirical proof that SVM parameter estimation is simply not the correct paradigm here,
mainly because it is optimizing the wrong objective function. Our estimation technique,
however, is directly maximizing the evaluation metric under consideration and results in
stable, effective parameter estimates across the collections.

When it comes to implementation, our method is considerably easier to implement than
SVMs, but more complex than language modeling. For this reason, a number of issues should
be considered before choosing a retrieval model. We feel that for this simple case, using

Springer

Inf Retrieval (2007) 10:257–274 269

Table 3 Training and test set mean average precision values for various ad hoc retrieval data sets and
training methods

Disks 1,2 Disk 3 Disks 4,5

Train Test Train Test Train Test

Unbalanced SVM 0.0955 0.1091 0.1501 0.1336 0.1421 0.1434
Balanced SVM 0.1577 0.1849 0.1615 0.1361 0.1671 0.1897
Language modeling 0.1883‡ 0.2155‡ 0.1875‡ 0.1642‡ 0.1819 0.1995
Feature-based 0.1955‡ 0.2327†‡ 0.2080†‡ 0.1773‡ 0.2238†‡ 0.2328†‡

The † represents a statistically significant improvement over language modeling and ‡ denotes significant
improvement over the balanced SVM model. Tests done using a one-tailed paired t-test at the 95% confidence
level.

Table 4 Overview of TREC collections and topics used in term proximity experiments

Name Description Size # Docs Topics

WSJ Wall St. Journal ’87–’92 510 MB 173,252 50–200
AP Associated Press ’88–’90 730 MB 242,918 50–200
WT10g TREC Web collection 11 GB 1,692,096 451–550
GOV2 2004 crawl of .gov domain 427 GB 25,205,179 701–750

simple term statistic features, language modeling (or BM25) is very likely the best practical
choice. The real power of feature-based methods comes when more complex features, such
as those that bag of words models fail to handle directly, are used. A good example of the
power of feature-based models is given in the next section, where we consider such features.

4.2 Term proximity features

In this section we consider a richer set of features beyond the ones considered in the previous
section. Here, we investigate features that make use of term proximity information. We
choose this set of features because there has been recent evidence that using term proximity
information can provide significant improvements in effectiveness over models that only
consider terms to be a simple bag of words (Gao et al., 2005; Mishne and de Rijke, 2005). We
present results for ad hoc retrieval experiments carried out on two medium-sized newswire
collections and two large TREC Web collections. Table 4 provides a summary of the data sets.
For this set of experiments, E = mean average precision, T = TREC relevance judgments,
f = term proximity features, and M� = P

d−1.
We consider an extremely simple set of features that account for different kinds of

proximity between terms within the query. Table 5 explains the three features used. As we
see, there are three features—a single-term feature, an exact phrase feature, and an unordered
phrase feature. These features are meant to capture the fact that query term order provides
important information. For example, the queries “white house rose garden” and “white rose
house garden” seek completely different pieces of information, yet are viewed as the same
query in the bag of words representation. The features also attempt to capture the fact that
most Web queries are made up of one or more implicit phrases, such as “white house” and
“rose garden” in our example. Since we consider all subphrases, we are likely to pick up on
such phrases and retrieve more relevant documents.

In our first experiment, we find the optimal parameters for our model and compare
against a simple bag of words model (language modeling) baseline. As for the bag of words

Springer

270 Inf Retrieval (2007) 10:257–274

Table 5 Features used in the term proximity retrieval experiments

Type Feature

Term
∑

qi
log

[
(1 − αd)

t fqi ,D

|D| + αd
c fqi
|C |

]
Ordered phrase

∑
qi ,...,qi+k

log
[
(1 − αd)

t f#1(qi ...qi+k),D

|D| + αd
c f#1(qi ...qi+k)

|C |
]

Unordered phrase
∑

qi ,...,q j
log

[
(1 − αd)

t f#uw8(qi ...q j),D

|D| + αd
c f#uw8(qi ...q j)

|C |
]

The term sum is over every query term, the ordered phrase sum is over every contiguous subset of query terms
of length two or more within the query, and the unordered phrase sum is over every subset of two or more
query terms. t f#1 is the count of the number of times the expression occurs as an exact phrase within D, and
t f#uw8 is the count of the number of times the terms within the expression appear ordered or unordered within
a window of length 8 within D. In addition, αd is a hyperparameter that is fixed a priori. See (Metzler and
Croft, 2005) for more details.

Table 6 Mean average
precision using optimal
parameter settings for each model

Language modeling Feature-based

AP 0.1775 0.1866† (+5.1%)
WSJ 0.2592 0.2738† (+5.6%)
WT10g 0.2032 0.2231† (+9.8%)
GOV2 0.2502 0.2844† (+13.7%)

Values in parentheseis denote percentage improve-
ment over language modeling. The † symbol indi-
cates an improvement that is statistically significant
(p < 0.05 with a one-tailed paired t-test).

experiments, the language model is trained by setting the smoothing parameter to the value
that maximizes mean average precision.

The results of the experiments are given in Table 6. As the results show, the models learned
achieve statistically significant improvements over the baseline language modeling system.
These results provide evidence that both term proximity and the training method developed
in this work can be leveraged to significantly improve effectiveness. As further evidence
of the power of both term proximity for Web retrieval and the proposed training method, a
model similarly trained achieved the best title-only run at the 2004 and 2005 TREC Terabyte
Tracks (Clarke et al., 2004; Metzler et al., 2004, 2005).

Another important aspect of these models is how well a set of parameters estimated on
one collection generalizes to other collections. As we saw in the previous section, the feature-
based model generalized well on the same collection across different query sets. However,
this does not mean it will generalize well when tested on a different test collection. To test
this, we trained and tested our model on every possible combination of collections. This
allows us to see, for example, how a model trained on a newswire collection generalizes to
a web collection, and vice versa. The results are reported in Table 7.

The results show that the parameters generalize well across collections. Somewhat sur-
prisingly, parameters estimated on newswire collections generalize sufficiently well to large
web collections. The converse is true, as well. These results show that the model parameters
are very stable across collections and that the model, using these features, does not seem to
suffer from overfitting.

Finally, Fig. 1 illustrates the well behaved, nearly concave surfaces that arise by imposing
the mean average precision metric over the multinomial simplex of ranking function param-
eters for each of the collections used in this section using term proximity features. Each

Springer

Inf Retrieval (2007) 10:257–274 271

Table 7 Mean average precision using term proximity features in feature-based model for various train-
ing/test set splits

Train\Test AP WSJ WT10g GOV2

AP 0.1866 0.2716 0.2226 0.2839
WSJ 0.1841 0.2738 0.2195 0.2694
WT10g 0.1865 0.2719 0.2231 0.2783
GOV2 0.1852 0.2709 0.2201 0.2844

 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
MAP:

wodniW deredrOmreT

Unordered Window

 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
MAP:

wodniW deredrOmreT

Unordered Window

 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
MAP:

wodniW deredrOmreT

Unordered Window

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
MAP:

wodniW deredrOmreT

Unordered Window

Fig. 1 Mean average precision values plotted over multinomial parameter simplex for AP, WSJ, WT10g,
and GOV2 collections using term proximity features (left to right, top to bottom). Intensity corresponds to
mean average precision, as indicated by the legend

of the surfaces has the same general form, indicating that the features capture an inherent
property that persists across different types of collections. Although there is no guarantee
that such a nicely concave surface will exist for all features and all evaluation metrics, it
provides some evidence that the functions we are maximizing over the simplex are not too
difficult to optimize using simple algorithms, such as coordinate ascent.

5 Conclusions

This paper presented a detailed overview of linear feature-based models. Although such
models have been looked at many times in the past, there has been no single unifying

Springer

272 Inf Retrieval (2007) 10:257–274

investigation of the theory at the heart of the framework. Here, we have presented a general
description of the theory underlying the models, in terms of the family of ranking functions
S and showed that the effective parameter space of such models, under a mild assumption,
is the multinomial manifold. We also described a novel method for computing the distance
between two models (parameter settings) that is not possible in most, if not all, of the
commonly used retrieval models.

Furthermore, we described methods for estimating the model parameters by directly
maximizing the evaluation metric under consideration, such as mean average precision. It was
argued, as well as shown empirically, that this method for estimating the model parameters is
more effective than methods proposed in the past, such as maximum likelihood or maximum
margin estimation. Directly maximizing the evaluation metric results in maximizing the
correct objective function and avoids the problem of metric divergence.

Finally, we showed empirically that the performance of linear feature-based model using
a simple set of features was capable of outperforming a strong language modeling baseline.
This demonstrates the practicality of the model. Furthermore, experiments were carried out
on a model that was constructed using more complex term proximity features. This model
was shown to significantly outperform the language modeling baseline on a wide range of test
collections. These results bring to light the true power of the model in terms of effectiveness
and suggest that combining even richer sets of features can lead to more improvements in
retrieval effectiveness.

Therefore, linear feature-based models, when formulated using a rich set of features and
trained appropriately, can achieve better than state-of-the-art performance. This, combined
with straightforward implementation, makes such models an attractive choice.

Acknowledgments This work was supported in part by the Center for Intelligent Information Retrieval, in
part by NSF Grant #CNS-0454018, in part by NSF Grant #IIS-0527159, and in part by Advanced Research
and Development Activity and NSF Grant #CCF-0205575. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect those of the
sponsor.

References

Baeza-Yates, R., & Navarro, G. (1999). Modern information retrieval. New York: Addison-Wesley.
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks

and ISDN Systems, 30(1–7), 107–117.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using

gradient descent. In ICML’05: Proceedings of the 22nd International Conference on Machine Learning
(pp. 89–96).

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2), 121–167.

Clarke, C., Craswell, N., & Soboroff, I. (2004). Overview of the TREC 2004 Terabyte Track. In Online
Proceedings of the 2004 Text Retrieval Conference.

Craswell, N., Robertson, S., Zaragoza, H., & Taylor, M. (2005). Relevance weighting for query independent
evidence. In Proceedings of the 28th Annual international ACM SIGIR conference on Research and
Development in Information Retrieval (pp. 416–423).

Cronen-Townsend, S., Zhou, Y., & Croft, W. B. (2002). Predicting query performance. In SIGIR’02: Pro-
ceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 299–306).

Gao, J., Qi, H., Xia, X., & Nie, J.-Y. (2005). Linear discriminant model for information retrieval. In Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 290–297).

Springer

Inf Retrieval (2007) 10:257–274 273

Gey, F. (1994). Inferring probability of relevance using the method of logistic regression. In Proceedings of
the 17th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 222–231).

Harman, D. (2004). Overview of the TREC 2002 novelty track. In Proceedings of the 2002 Text Retrieval
Conference.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 133–142).

Joachims, T. (2005). A support vector method for multivariate performance measures. In Proceedings of the
International Conference on Machine Learning (pp. 377–384).

Joachims, T., Granka, L., Pan, B., Hembrooke, H., & Gay, G. (2005). Accurately interpreting clickthrough
Data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 154–161).

Kraaij, W., Westerveld, T., & Hiemstra, D. (2002). The importance of prior probabilities for entry page search.
In Proceedings of SIGIR 2002 (pp. 27–34).

Lafferty, J., & Zhai, C. (2001). Document language models, query models, and risk minimization for infor-
mation retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 111–119).

Lebanon, G., & Lafferty, J. (2004). Hyperplane margin classifiers on the multinomial manifold. In Proceedings
of the Twenty-First International Conference on Machine Learning (pp. 66–71).

Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple
nested ranker. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 437–444).

Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies. In Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 472–479).

Metzler, D., Strohman, T., Turtle, H., & Croft, W. B. (2004). Indri at Terabyte Track 2004. In Online
Proceedings of the 2004 Text Retrieval Conference.

Metzler, D., Strohman, T., Zhou, Y., & Croft, W. B. (2005). Indri at Terabyte Track 2005. In Online Proceedings
of the 2005 Text Retrieval Conference.

Mishne, G., & de Rijke, M. (2005). Boosting Web retrieval through query operators. In Proceedings of the
27th European Conference on Information Retrieval (pp. 502–516).

Morgan, W., Greiff, W., & Henderson, J. (2004). Direct maximization of average precision by
hill-climbing with a comparison to a maximum entropy approach, Technical report, MITRE,
http://www.mitre.org/work/tech papers/tech papers 04/morgan hill/morgan hill.pdf

Morik, K., Brockhausen, P., & Joachims, T. (1999). Combining statistical learning with a knowledge-based
approach—A case study in intensive care monitoring. In Proceedings of the 16th International Conference
on Machine Learning (pp. 268–277).

Nallapati, R. (2004). Discriminative models for information retrieval. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 64–
71).

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning
techniques. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (pp. 79–86).

Pietra, S. D., Pietra, V. D., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(4), 380–393.

Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 275–281).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of
scientific computing. Cambridge, UK: Cambridge University Press, ISBN 0521431085.

Robertson, S., Walker, S., Beaulieu, M. M., & Gatford, M. (1995). Okapi at TREC-4. In Online Proceedings
of the Fourth Text Retrieval Conference (pp. 73–96).

Shen, X., & Zhai, C. (2005). Active feedback in ad hoc information retrieval. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 59–66).

Si, L., & Callan, J. (2001). A statistical model for scientific readability. In CIKM’01: Proceedings of the Tenth
International Conference on Information and Knowledge Management (pp. 574–576).

Zhai, C. (2002). Risk minimization and language modeling in information retrieval. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, http://www.cs.cmu.edu/ ∼ czhai/thesis.pdf.

Springer

274 Inf Retrieval (2007) 10:257–274

Zhai, C., & Lafferty, J. (2001). A study of smoothing methods for language models applied to ad-hoc infor-
mation retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 334–342).

Zhang, D., Chen, X., & Lee, W. S. (2005). Text classification with kernels on the multinomial manifold. In
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 266–273).

Zhou, Y., & Croft, W. B. (2005). Document quality models for Web ad hoc retrieval. In CIKM’05: Proceedings
of the 14th ACM International Conference on Information and Knowledge Management (pp. 331–332).

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

