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ABSTRACT
Previous applications of the Markov random field model for
information retrieval have used manually chosen features.
However, it is often difficult or impossible to know, a pri-

ori, the best set of features to use for a given task or data
set. Therefore, there is a need to develop automatic feature
selection techniques. In this paper we describe a greedy pro-
cedure for automatically selecting features to use within the
Markov random field model for information retrieval. We
also propose a novel, robust method for describing classes
of textual information retrieval features. Experimental re-
sults, evaluated on standard TREC test collections, show
that our feature selection algorithm produces models that
are either significantly more effective than, or equally ef-
fective as, models with manually selected features, such as
those used in the past.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Theory

Keywords
Feature selection, parameter estimation, Markov random
field model

1. INTRODUCTION
Developing effective retrieval models is a core problem in

the field of information retrieval. Many different types of
models have been proposed throughout the years, includ-
ing Boolean, vector space, logic-based, probabilistic, and
feature-based. One critical factor that must be considered
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when developing information retrieval models is the type of
features to be used or modeled. Term frequency, inverse
document frequency, document length, and term proximity
are the fundamental features that are used in most of the
modern information retrieval models including BM25 [22],
language modeling [25], divergence from randomness [1], ax-
iomatic approach to IR [8], and the Markov random field
(MRF) model for IR [16].

However, most of these models make use of hand selected,
probabilistically-inspired, or implicit features. Therefore, it
is often difficult to adapt these types of models to new tasks,
especially when the task has new, completely different types
of features associated with it. Applying these models to
new tasks typically requires an information retrieval expert
to modify the underlying model in some way in order to
properly account for the new types of features. This is a
common theme in information retrieval modeling. Examples
include incorporating PageRank as a prior into the BM25
model [5], allowing term proximity information as evidence
in BM25 [4], modeling document structure in both language
modeling and BM25 [19, 23], including term dependence in
the DFR model [20], and allowing term associations in the
axiomatic model [9]. These examples illustrate that incor-
porating new types of evidence and features into existing
retrieval models is often non-trivial and can require signifi-
cant amounts of human involvement.

Therefore, it is desirable for models to be flexible and ro-
bust enough to easily handle a wide range of features and
provide a mechanism for automatically selecting relevant
features. Then, given a large pool of candidate features,
it would be possible to automatically learn the best model.
Under this model learning paradigm, there would no longer
be a need to manually tune or modify some existing retrieval
model whenever a new task or data set is encountered. In-
stead, attention could be paid to developing a rich pool of
features that are widely applicable.

We argue that the MRF model for information retrieval [16]
and similar types of models, such as Gao et al.’s Linear Dis-
criminant Model [12], are the correct types of models to
use when model flexibility and robustness are important.
These models provide a way of combining evidence from
a wide range of textual features (e.g., term frequency, in-
verse document frequency, and term proximity measures)
and non-textual features (e.g., PageRank, spam probability,
and numeric attributes).

In this work, we propose an automatic, supervised feature
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selection algorithm that can be used in conjunction with
any linear feature-based retrieval model, such as the MRF
model [17]. The algorithm is novel, in that it is the first
algorithm of its kind to be specifically designed for informa-
tion retrieval tasks. The algorithm is also robust, since it
can be applied to a wide range of feature sets, evaluation
metrics, and methods for learning to rank. Lastly, but most
importantly, the algorithm produces highly effective models.
We show that models constructed using our algorithm are
often significantly more effective than hand built models.

Although the primary contribution of this paper is our
proposed feature selection algorithm, we also propose a canon-
ical method for describing textual information retrieval fea-
tures. The representation makes it easy to generate large
sets of features that can be used with our algorithm.

The remainder of this paper is laid out as follows. Sec-
tion 2 provides background material on the MRF model for
IR and discusses previous feature selection work. In Sec-
tion 3 we explain our novel method for representing fea-
tures. Next, Section 4 describes our proposed feature se-
lection approach. Then, in Section 5 we formally evaluate
various aspects of our proposed algorithm and compare the
effectiveness of the learned models to several other retrieval
models. Finally, in Section 6 we summarize our contribu-
tions and outline potential directions for future work.

2. RELATED WORK
We now briefly introduce the MRF model for IR and de-

scribe previous work that is related to our feature selection
algorithm.

2.1 Markov Random Field Model for IR
Recently, a new information retrieval model based on Markov

random fields was proposed. The model goes beyond the bag
of words assumption that underlies BM25 and (unigram)
language modeling [22, 25]. The MRF model generalizes
various dependence models that have been proposed in the
past [16]. Most previous term dependence models have failed
to show consistent, significant improvements over baseline
bag of words model, with few exceptions [11]. The MRF
model, however, has been shown to be highly effective across
a variety of tasks, such as ad hoc retrieval [18], named-page
finding [18], and Japanese web search [6].

Markov random fields are undirected graphical models.
They provide a compact and flexible way of modeling joint
distributions. The MRF model for IR models the joint dis-
tribution over a query Q = q1, . . . , qn and a document D.
The underlying distribution over pairs of documents and
queries is assumed to be a relevance distribution. That is,
sampling from the distribution gives pairs of documents and
queries, such that the document is relevant to the query.

A MRF is defined by a graph G and a set of non-negative
potential functions over the cliques in G. The nodes in the
graph represent the random variables and the edges define
the independence semantics of the distribution. A MRF sat-
isfies the Markov property, which states that a node is inde-
pendent of all of its non-neighboring nodes given observed
values for its neighbors.

Given a graph G, a set of potentials ψi, and a parameter
vector Λ, the joint distribution over Q and D is given by:

PG,Λ(Q,D) =
1

ZΛ

∏

c∈C(G)

ψ(c; Λ)

where ZΛ is a normalizing constant and C(G) is the set of
cliques in G. We follow common convention and parameter-
ize the potentials as ψi(c; Λ) = exp[λifi(c)], where fi(c) is a
real-valued feature function.

Under this parameterization, documents are ranked in de-
scending order according to P (D|Q), which can be shown to
be rank equivalent to:

P (D|Q)
rank
=

∑

c∈C(G)

λcfc(c)

Therefore, the ranking function is a weighted linear combi-
nation of features defined over the cliques of the MRF. The
automatic feature selection algorithm proposed here asso-
ciates new feature functions and weights (parameters) with
cliques in G, which results in new λf(·) components being
added to the ranking function. Nothing about our selection
algorithm is specific to the MRF model, and hence it can
be applied to any ranking function that is a weighted linear
combination of features.

2.2 Feature Selection and Combination
A number of feature selection techniques for random field

models have been proposed in the machine learning litera-
ture [14, 21]. Our proposed algorithm is an adaptation of the
feature induction technique proposed by Pietra et al. in [21].
Pietra et al. propose a greedy approach for adding induced
features to the underlying model. During each iteration, the
information gain for each induced feature is computed. The
feature with the highest information gain is then added to
the model and the entire model is retrained. Although we
do not actually induce new features in our present work,
we use a similar algorithm for selecting from a large pool
of features. Another difference is that our algorithm scores
each feature according to any information retrieval metric
of interest. The feature that improves the metric the most
is the one that is added to the model.

There has also been some information retrieval research
into automatically learning ranking function using genetic
programming [7]. These algorithms attempt to find a locally
optimal ranking function by iteratively “evolving” a popu-
lation of ranking functions using mutations and crossovers.
Ranking functions are represented as arithmetic trees that
consist of arithmetic operators and standard bag of words
information retrieval features (e.g., term frequency, docu-
ment length, etc.). The learned ranking functions have been
shown to be significantly more effective than baseline rank-
ing algorithms for several data sets [7].

Finally, result fusion techniques are another way of com-
bining evidence from multiple types of features [2, 10]. If
each individual feature is used as a ranking function, then
data fusion techniques can be used to determine the best way
to combine the rankings. However, using these techniques
in this way does not directly address the feature selection
problem, which is the primary focus of our work.

3. FEATURE REPRESENTATION
In this section we propose a novel method for describ-

ing textual information retrieval features. Textual features
are defined to be any type of feature that can be extracted
directly from text. Simple examples include the frequency
of some term in a document and document length. More
complex examples include the average positional distance
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between two terms in a document and the BM25 weight of
some term in a document. There currently exists no canoni-
cal way of representing rich sets of information retrieval fea-
tures. In the remainder of this section we propose a canon-
ical representation of textual feature representation that is
compact, intuitive, and capable of representing a wide range
of useful information retrieval features.

Since most information retrieval models are concerned
with ranking documents in response to a query, we focus on
textual features defined over query/document pairs. Thus,
the input to our features is a query/document pair and the
the output is a real value. Within our proposed representa-
tion, each feature is represented using a 3-tuple of the form
(dependence model type, clique set type, weighting function).
Each component of the tuple is described in detail below.

The input to our feature induction algorithm will be a set
of 3-tuples, each of which represents a single feature. We
note, however, that our algorithm does not require features
to be represented this way. Instead, as we will show, this
representation simply allows for large classes of features to
be enumerated and explained compactly and easily.

3.1 Dependence Model Type
The first entry in the tuple is the dependence model type,

which specifies the dependencies, if any, that are to be mod-
eled between query terms. In the MRF model, dependen-
cies are encoded by the edges in the graph. Different edge
configurations correspond to different types of dependence
assumptions.

In this work, we focus on three dependence model types.
The three types are full independence (FI), sequential de-
pendence (SD), and full dependence (FD). Examples of each
type are given in Figure 1. We restrict ourselves to these
three types because they have been used successfully in pre-
vious work and because they encompass the most common
dependence assumptions used in information retrieval [16].
However, we note that query term dependencies can be in-
ferred in other ways, such as constructing a dependence
tree [27] or using the approach described by Gao et al. [11].

3.2 Clique Set Type
The second entry in the tuple, the clique set type, describes

the set of cliques within the graph that the feature is to be
applied to. Each feature is applied to one or more cliques
within the graph. If it is applied to more than one clique,
then all of the cliques that share the feature also share the
weight for that feature. Therefore, clique sets act to tie
parameters together, which is essential to avoid overfitting
within the model.

In this work, we focus on three clique sets that have been
found to be useful in previous work. These include:

• single term – set of cliques containing the document
node and exactly one query term.

• ordered terms – set of cliques containing the document
node and two or more query terms that appear in se-
quential order within the query.

• unordered terms – set of cliques containing the docu-
ment node and two or more query terms that appear
in any order within the query.

It should be noted that the unordered terms are a super-
set of the ordered terms and that the cliques that make up

each set may change for different dependence model types.
For example, the ordered terms and unordered terms clique
sets are empty under the full independence assumption since
that would result in a graph where there are no cliques with
two or more query terms nodes. However, under the sequen-
tial dependence assumption, and with a query of length 2
or more, such cliques will exist and the ordered terms and
unordered terms clique sets will not be empty.

If a clique set is empty, then its feature value is 0. How-
ever, if the clique set contains one or more cliques, then the
feature value is the sum of the feature weights for each clique
in the set. For example, given the query new york city, using
the full independence model and the single term clique set,
we would obtain a feature value of f(new,D)+f(york,D)+
f(city,D). Therefore, clique sets act to anonymize query
terms. In this way, clique sets can be thought of as feature

types. Thus, we have defined single term, ordered terms,
and unordered terms feature types.

It is possible to define many different types of clique sets.
For example, another clique set may be defined as “the clique
that contains the first query term and the document node”.
Given enough training data, it may be possible to define
such fine grained clique sets. However, given the limited
amount of training data, we focus our attention on these
coarse grained features.

Table 1 summarizes our discussion, provides example cliques
for each clique set, and shows how a feature value would be
computed for each.

3.3 Weighting Function
Finally, the third entry in the tuple is the weighting func-

tion, which describes how the feature values are computed.
Going back to the new york city example, the weighting
function describes how f(new,D), f(york,D), and f(city,D)
are computed.

In this work, we define weighting functions that can be
used with our clique sets. We explore weighting functions
based on language modeling estimates (Dirichlet smooth-
ing [28]) and the popular BM25 weighting model. It is
straightforward to use the standard forms of these weight-
ing functions for the single term clique set. However, we
must define how to match the query terms within docu-
ments when applying these weighting functions to the or-
dered terms clique set and the unordered terms clique set.

For the ordered term case, we match terms in documents
using the Inquery ordered window operator (#M), where the
parameter M determines how many non-matching terms are
allowed to appear between matched terms. This rewards
documents for preserving the order that the query terms
occur in.

In the unordered term case we match terms using the In-
query unordered window operator (#uwN), where N defines
the maximum size of the window that the terms may occur
(ordered or unordered) in. Here, we reward documents in
which subsets of query terms occur within close proximity
of each other. For more details on the matching semantics
of these operators, please refer to [15].

Table 2 summarizes the weighting functions used in this
work. Of course, many different types of weighting functions
could easily be used within the model. If new, more effective
term weighting functions are developed in the future, then
they can be easily used instead of, or in addition to, the
Dirichlet or BM25 weights.
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Figure 1: Example Markov random field model for three query terms under various independence assump-
tions. (left) full independence, (middle) sequential dependence, (right) full dependence.
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q1 q3

f(q1, q2, D) + f(q2, q3, D) + f(q1, q3, D) + f(q1, q2, q3, D)

Table 1: Illustration of clique sets for query q1 q2 q3 under full dependence assumption. For each clique set
we provide an example clique within the set and show how the value of a feature applied to the clique set is
computed.
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Weighting Function Feature Value

LM fLM,T (qi, D) = log

[

tfqi,D+µ
cfqi
|C|

|D|+µ

]

LM-O-M fLM,U,M (q1, . . . , qk, D) = log

[

tf
#M(q1...qk),D+µ

cf#M(q1...qk)

|C|

|D|+µ

]

LM-U-N fLM,O,N (q1, . . . , qk, D) = log

[

tf
#uwNk(q1...qk),D+µ

cf
#uwNk(q1...qk)

|C|

|D|+µ

]

BM25 fT,BM25(qi, D) =
(k1+1)tfw,D

k1

(

(1−b)+b
|D|

|D|avg

)

+tfw,D

log N−dfw+0.5
dfw+0.5

BM25-O-M fBM25,O,M (q1, . . . , qk, D) =
(k1+1)tf

#M(q1...qk),D

k1

(

(1−b)+b
|D|

|D|avg

)

+tf#M(q1...qk),D

log
N−df#M(q1...qk)+0.5

df#M(q1...qk)+0.5

BM25-U-N fBM25,U,N (q1, . . . , qk, D) =
(k1+1)tf

#uwNk(q1...qk),D

k1

(

(1−b)+b
|D|

|D|avg

)

+tf
#uwNk(q1...qk),D

log
N−df

#uwNk(q1...qk)+0.5

df
#uwNk(q1...qk)+0.5

Table 2: Summary of Dirichlet and BM25 weighting functions. Here, M and N act as weighting function
parameters that affect how matching is done, tfe,D is the number of times expression e matches in document
D, cfe,D is the number of times expression e matches in the entire collection, dfe is the total number of
documents that have at least one match for expression e, |D| is the length of document D, |D|avg is the
average document length, N is the number of documents in the collection, and |C| is the total length of the
collection. Finally, µ, k1, and b are weighting function hyperparameters.

3.4 Examples
Now that we have described each element that makes up

the 3-tuple feature representation, we now give a set of ex-
amples in order to clarify the previous discussion and make
it more concrete. For these examples, we continue to use
the query new york city.

The first example feature is (FI, single term, BM25). This
makes use of the full independence variant, the single term
clique set, and the BM25 weighting function. The resulting
feature value is then:

fBM25,T (new,D) + fBM25,T (york,D) + fBM25,T (city,D)

where fBM25,T takes on the BM25 form as given in Table 2.
We see that this feature value is simply the BM25 score of
query for document D.

The next example feature is (SD, ordered terms, LM-O-4),
which uses the sequential dependence variant, the ordered
terms clique set, and a Dirichlet weighting function. The
resulting feature value is then:

fLM,O,4(new, york,D) + fLM,O,4(york, city,D)

where fLM,O,4 takes on the Dirichlet form and M , the or-
dered window size, is set to 4.

The feature (SD, unordered terms, LM-U-32) is computed
in a similar fashion, except the Dirichlet form of fLM,U,32 is
used and N , the unordered window size, is set to 32. As
these examples illustrate, this canonical form allows us to
compactly define a large, rich set of feature functions.

4. AUTOMATIC FEATURE SELECTION

4.1 Overview
As we described before, feature selection techniques are

commonly used in the machine learning community. In this
section we propose a feature selection algorithm for informa-
tion retrieval. Feature selection is important for a number
of reasons. First, it provides a general, robust way of build-
ing models when there is little a priori knowledge about the

types of features that may be important for a given task or
data set. By using a feature selection algorithm, the model
designer can focus less on building the best model and can
instead focus on designing good features. Second, feature se-
lection can reduce the number of noisy or redundant features
in a large feature set. Such features may reduce training ef-
ficiency and may result in a model that contains a number
of non-identifiable parameters. Non-identifiable parameters
are those that cannot be reasonably estimated given the
training data. This often results from having redundant or
highly correlated features. Feature selection helps overcome
the problems associated with non-identifiable parameters.
Finally, feature selection can provide insights into the im-
portant features for a given task or data set. By inspecting
the order in which features are selected, we can often learn
what characteristics of a given task are the most important
or the most exploitable. This knowledge can then be used
by the feature engineer to construct better features.

4.2 Algorithm
We now describe our automatic feature selection algo-

rithm. While our discussion will focus on how the algo-
rithm can be applied to the MRF model for IR, it should be
noted that it can also be applied to a variety of other mod-
els. In particular, it is well suited for linear feature-based
models [17].

Let Mt denote the model learned after iteration t. Fea-
tures are denoted by f and the weight (parameter) asso-
ciated with feature f is denoted by λf . The candidate
set of features is denoted by F . The entire set of feature
weights for a model is denoted by Λ. A model, then, is rep-
resented as set of feature/weight pairs. Finally, we assume
that SCORE(M) returns the utility or ’goodness’ of model
M with respect to some training data. The utility function
and the form of the training data largely depends on the un-
derlying task. For example, for ad hoc retrieval, it is likely
that SCORE(·) would return the mean average precision
of using model M against some set of training data, such
as TREC topics and relevance judgments. For a homepage
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finding task, SCORE(·) might be another metric, such as
mean reciprocal rank. The important thing to note here is
that any utility function, regardless of whether or not it is
differentiable with respect to the model parameters, can be
used. Therefore, the ultimate goal of our feature selection
algorithm is to select features and set feature weights in such
a manner as to maximize the metric imposed by SCORE(·).

The algorithm begins with an empty model (i.e., M0 =
{}). Then, we temporarily add a feature f to the model. We
then hold all weights except λf fixed and find the setting for
λf that maximizes the utility of the augmented model. This
step can be done using any number of learning to rank tech-
niques [3, 13, 17]. The utility of feature f (SCOREf ) is
defined to be the maximum utility obtained during train-
ing. The feature’s utility measures how good the current
model would be if the feature were added to it. This pro-
cess is repeated for every f ∈ F , resulting in a utility being
computed for every feature in the candidate pool. The fea-
ture with the maximum utility is then added to the model
and removed from F . After the new feature is added, we
can, optionally, retrain the entire set of weights. The entire
process is then repeated until either some fixed number of
features have been added to the model or until the change
in utility between consecutive iterations drops below some
threshold. See Algorithm 1 for this algorithm written in
pseudo-code.

Note that our algorithm is not guaranteed to find the
global maximum for SCORE(M). Instead, we are only
guaranteed to find a local maxima. Many factors, including
properties of SCORE(M), the number of features used, and
the properties of the feature used, will affect the quality of
the learned model.

Algorithm 1 Feature selection algorithm.

1: t← 0
2: Mt ← {}
3: while SCORE(Mt)− SCORE(Mt−1) > ε do
4: for f ∈ F do
5: λ̂f ← arg maxλf

SCORE(M ∪ {(f, λf )})

6: SCOREf ← SCORE(M ∪
{

(f, λ̂f )
}

)

7: end for
8: f∗ ← arg maxf SCOREf

9: M ←M ∪
{

(f∗, λ̂f∗)
}

10: Λ← arg maxΛ SCORE(M) (optional)
11: F ← F − {f∗}
12: t← t+ 1
13: end while

Although we do not formally evaluate the efficiency of our
proposed algorithm, we note that our algorithm, without re-
training, only requires a linear (in the size of F) number of
single parameter training steps each iteration. If we are to
select k features, such that k << |F|, then, depending on
the time complexity of the training algorithm, it is likely
that training using our algorithm will be more more com-
putationally efficient than training a monolithic model with
|F| features.

5. EVALUATION
In this section we experimentally evaluate various aspects

of our proposed feature selection algorithm.

Name Description # Docs Train
Topics

Test
Topics

WSJ Wall St.
Journal 87-92

173,252 51–150 151–200

AP Assoc. Press
88-90

242,918 51–150 151–200

ROBUST Robust 2004
data

528,155 301–450 601–700

WT10g TREC Web
collection

1,692,096 451–500 501–550

GOV2 2004 crawl of
.gov domain

25,205,179 701–750 751–800

Table 3: Overview of TREC collections and topics.

5.1 Setup
In order to investigate the strengths and weaknesses of

our proposed feature selection algorithm, we evaluate its ef-
fectiveness on a wide range of ad hoc retrieval data sets.
Table 3 summarizes the TREC data sets used in our experi-
ments. The WSJ, AP, and ROBUST collections are smaller
and consist entirely of newswire articles. The WT10g and
GOV2 are large web collections. The topics for each data
set are split into a training and test set.

Our experiments were done using Searching using Markov
Random Fields (SMRF), which is a new Java-based toolkit
that sits on top Indri [26] and provides a robust framework
for experimenting using the MRF model. All collections
were stopped using a standard list of 418 common terms
and stemmed using a Porter stemmer. Only the title por-
tion of the TREC topics are used to construct queries. Our
primary evaluation metric is mean average precision. Sta-
tistical significance is determined using a one-tailed paired
t− test evaluated at the p < 0.05 level.

We now describe our feature candidate pool in terms of the
feature representation scheme we proposed in Section 3. For
dependence model type, the features may be either FI (full
independence), SD (sequential dependence), or FD (full de-
pendence). The clique set type may either be single term,
ordered terms, or unordered terms. The weighting functions
include LM, BM25, [LM, BM25]-O-[1, 2, 4, 8, 16, or 32], and
[LM, BM25]-U-[1, 2, 4, 8, 16, 32, or unlimited]. As we see,
the pool is very robust and covers many different types of im-
portant features. It includes features that span all three type
of dependence, use all three types of clique sets, allow both
Dirichlet or BM25 weighting, and vary the window sizes for
the ordered and unordered window matchings across a range
of values. After removing trivial and duplicate features, our
candidate pool consists of 48 features.

For all of our experiments, features are added until there
is no change in training set mean average precision between
iterations (i.e., ε = 0) or until we have added 5 features.
Preliminary experiments showed that adding more than 5
features never resulted in significantly different training or
test rest results. Therefore, for efficiency reasons, we chose
to stop after 5 features have been added to the model.

5.2 No Retraining vs. Retraining
We wish to analyze what effect, if any, retraining (see Al-

gorithm 1, line 10) has on training and generalization prop-
erties of the model. Table 4 summarizes the mean average
precision obtained on the training and test set when retrain-
ing is used and when it is not.
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No Retrain Retrain
Train Test Train Test

AP 0.1863 0.2266 0.1865 0.2246
WSJ 0.2700 0.3553 0.2703 0.3543

ROBUST 0.2387 0.3079 0.2391 0.3065
WT10G 0.2344 0.2129 0.2357 0.2140

Table 4: Training and test set mean average preci-
sion values for no retraining and retraining.

We first investigate whether or not the models learned
with retraining vary significantly from those learned without
retraining. As Table 4 shows, the training set mean average
precision values for no retraining and retraining are nearly
equivalent for every data set. In fact, the differences are sta-
tistically indistinguishable. In addition, we discovered that
the same set of features were added regardless of whether
or not retraining was done or not. Therefore, it appears
as though retraining has little effect on the learned model,
both in terms of the features selected and the training set
mean average precision.

Next, we study the effect of retraining on the general-
ization properties of the model. As the test set results in
Table 4 show, there is very little difference in mean average
precision for no retraining versus retraining. The results,
again, are statistically indistinguishable for every data set.
Hence, retraining does not significantly affect how well the
model generalizes to unseen data.

Therefore, given that retraining requires more computa-
tional power, has no effect on either the learned model or
the generalization properties of the model, we conclude that
there is no need to retrain the model each iteration.

5.3 Number of Features
We now analyze how sensitive the models are to the num-

ber of parameters, both in terms of potential overfitting, and
in terms of test set effectiveness.

Figure 2 plots the training and test set mean average pre-
cision versus the number of features that have been added
to the model. As the figure indicates, there appears to be
little, if any overfitting happening. The test set mean aver-
age precision never significantly drops as more features are
added to the model.

5.4 Analysis
The greedy nature of our feature selection algorithm pro-

vides us with a mechanism for analyzing the importance of
different types of features across tasks and data sets. By
looking at the order in which features are selected, and the
weight assigned to each, we can develop deeper insights into
the role that features play for a given task and/or data set.

For example, for the WT10G data set, with no retraining,
the features are selected in the following order:

(FI, single term, BM25) : 0.8138

(FD, unordered terms, LM-U-8) : 0.0001

(SD, unordered terms, BM25-U-unlimited) : 0.0090

(FD, unordered terms, BM25-U-8) : 0.1575

(SD, ordered terms, BM25-O-8) : 0.0196

where the numbers after the colons are the weights assigned
to each feature in the final model.

As Figure 2 shows, there is a large increase in both train-
ing and test set mean average precision after the second
feature is added to model. This large increase, which is also
exhibited for the GOV2 data set, reiterates the importance
of term proximity models for large web collections [16]. We
see that simply adding a single proximity feature increases
mean average precision substantially. However, there is a
much smaller effect observed after further term proximity /
dependence model features are added to the model.

To provide a different example, we consider the order in
which features were selected for the WSJ collection. The
features selected, in order, are:

(FI, single term, BM25) : 0.5864

(SD, unordered terms, BM25-U-1) : 0.3746

(FD, unordered terms, BM25-U-32) : 0.0193

(FI, single term, LM) : 0.0196

(FD, unordered terms, BM25-U-unlimited) : 0.0001

As with the WT10G model, the first feature selected is
the full independence, single term, BM25 feature. In fact,
this feature was the first selected for every data set. This is
not surprising, however, since the overwhelming importance
of single term features has long been understood. In fact,
some have argued that it is not possible to do much better
than simply using single term identifiers [24].

However, no other strong regularities were observed across
data sets. This indicates that the each data set has unique
characteristics that make certain features more discrimina-
tive than others. Such characteristics may include things
like query length, noise, document length distribution, and
properties of the underlying vocabulary. This suggests that
no single model, with a fixed feature set and fixed feature
weights, can be applied to every possible task and data set.
Instead, adaptive models and techniques, such as the one
presented in this paper, can provide a means for automati-
cally and robustly learning the best set of features to use on
a task-by-task basis.

5.5 Summary of Results
Finally, we compare the retrieval effectiveness of the mod-

els automatically learned using our feature selection algo-
rithm (MRF-FS) with several other retrieval models, includ-
ing language modeling (Dirichlet smoothing), BM25, and
two MRF models with hand selected features (MRF-LM and
MRF-BM25) that have been shown to be highly effective
in the past. For each model, parameters are tuned on the
training set to maximize mean average precision. Therefore,
every model is properly trained in accordance with the same
evaluation metric.

The MRF-LM model uses three manually chosen features.
These features are:

(FI, single term, LM)
(FD, ordered terms, LM-O-1)

(FD, unordered terms, LM-U-4)

These are the same features that are used in [16] under the
full dependence model variant. The MRF-BM25 model uses
the same exact set of features, except BM25 weighting is
used in place of language modeling weighting. These hand
selected features have been shown to be highly effective for
the ad hoc retrieval task in the past, consistently producing
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Figure 2: Mean average precision versus number of iterations for the training and test sets of the AP, WSJ,
ROBUST, WT10G, and GOV2 data sets.
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LM BM25 MRF-LM MRF-BM25 MRF-FS
AP 0.2077 0.2149 0.2147 0.2210 0.2266

WSJ 0.3258 0.3332 0.3425 0.3512 0.3553
ROBUST 0.2920 0.2892 0.3092 0.3101 0.3079
WT10G 0.1861 0.1948 0.2140 0.2129 0.2129
GOV2 0.2984 0.2970 0.3325 0.3476 0.3500

Table 5: Comparison of test set mean average precision for language modeling (LM), BM25, MRF model
using language modeling weighting (MRF-LM), MRF model using BM25 weighting, and MRF learned using
our proposed feature selection algorithm (MRF-FS).

statistically significant better effectiveness over bag of words
models [16, 18]. This allows us to compare models that are
automatically learned using our feature selection algorithm
with models that use manually chosen features and have
been proven to be highly effective.

Our results, which are summarized in Table 5, support
previous observations that show that using MRF models
with hand chosen features are generally more effective than
bag of words models for ad hoc retrieval. However, we are
interesting in how effective the automatically learned models
are. For both the AP and WSJ data sets, the mean average
precision of the automatically learned model is statistically
significantly better than all of the other models, including
the MRF models with manually chosen features. The im-
provement in mean average precision over BM25 for the AP
data set is 5.4% and 6.6% on the WSJ data set.

On the ROBUST, WT10G, and GOV2 data sets, the auto-
matically learned models are statistically significantly better
than language modeling and BM25, but statistically indis-
tinguishable from the two models with hand selected fea-
tures. Despite the lack of a statistically significant improve-
ment over the models with hand selected features, the results
still provide evidence that the learned model is highly effec-
tive. Indeed, compared to BM25, the automatically learned
model is 6.5% better for ROBUST, 9.3% better for WT10G,
and 17.8% better for GOV2.

Therefore, our results show that our proposed feature se-
lection algorithm produces very effective models that are
competitive with, and often significantly better than mod-
els with hand selected features.

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented an automatic feature selection

algorithm for information retrieval models. While the algo-
rithm was presented in terms of the MRF model for IR, it
can also be applied to any linear feature-based model. The
algorithm shifts the focus of information retrieval practition-
ers from manual feature selection/combination to feature
engineering.

In addition, we presented a novel, robust scheme for rep-
resenting textual features. Under the scheme, features are
represented as 3-tuples that consist of dependence model
type, clique set type, and a weighting function. This scheme
can be used to represent a wide variety of useful information
retrieval features. We used the scheme in conjunction with
our feature selection algorithm to enumerate a large pool of
candidate features.

We also evaluated the effectiveness of the automatically
learned models. We showed that there is little benefit to re-
training the entire model after each iteration and that there
were few signs of overfitting when analyzing the learning

curves. We also investigated the order in which features are
added to the model and showed that single term features,
as expected, are always added first, and that various term
proximity features are then added, depending on various
characteristics of the data set. Finally, we showed that the
automatically learned models are always statistically signif-
icantly better than language modeling and BM25 and, for
two data sets, statistically significantly better than a model
with carefully hand selected features. Overall, our results
prove the robustness and effectiveness of our proposed algo-
rithm.

In terms of future work, it would be interesting to com-
bine our feature selection approach with the genetic pro-
gramming approaches described in Section 2. Genetic pro-
gramming can be used to automatically induce new features
that can then be automatically selected into a model using
our algorithm. It would also be interesting to apply the
proposed algorithm to other tasks, such as web search, blog
search, or XML retrieval.
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