
When Close Enough Is Good Enough: Approximate
Positional Indexes for Efficient Ranked Retrieval

Tamer Elsayed
King Abdullah University of
Science and Technology

Thuwal, Saudi Arabia
tamer.elsayedaly@kaust.edu.sa

Jimmy Lin
The iSchool

University of Maryland
College Park, MD

jimmylin@umd.edu

Donald Metzler
Information Sciences Institute
Univ. of Southern California

Marina del Rey, CA
metzler@isi.edu

ABSTRACT
Previous research has shown that features based on term
proximity are important for effective retrieval. However,
they incur substantial costs in terms of larger inverted in-
dexes and slower query execution times as compared to term-
based features. This paper explores whether term proximity
features based on approximate term positions are as effective
as those based on exact term positions. We introduce the
novel notion of approximate positional indexes based on di-
viding documents into coarse-grained buckets and recording
term positions with respect to those buckets. We propose
different approaches to defining the buckets and compactly
encoding bucket ids. In the context of linear ranking func-
tions, experimental results show that features based on ap-
proximate term positions are able to achieve effectiveness
comparable to exact term positions, but with smaller in-
dexes and faster query evaluation.

Categories and Subject Descriptors: H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Performance

Keywords: term proximity, efficiency, learning to rank

1. INTRODUCTION
In information retrieval, efficiency (speed) and effective-

ness (quality) are often in tension, since good relevance sig-
nals are frequently expensive to compute during ranking.
For example, term proximity features are good predictors
of relevance but are costly to compute compared to term-
based features. This paper proposes to reduce the cost of
computing term proximity features by introducing approx-
imate positional indexes, a novel method of encoding term
positions in the payload of postings lists.

There are two aspects of cost associated with term prox-
imity features. The first is index size: in order for a rank-
ing model to support term proximity features, term posi-
tions must be encoded in postings payloads. The second is
the speed of computing term proximity features at retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

time. For example, to determine if two query terms occur
within w terms of each other during ranking, term positions
must be decoded and checked. This is computationally ex-
pensive compared to term-based features.

The central hypothesis explored in this paper is the follow-
ing: are term proximity features based on approximate term
positions as effective as those based on exact term positions?
The answer turns out to be yes, in that a fuzzy notion of
term proximity yields ranking functions, trained in a learn-
ing to rank framework, that are comparable in effectiveness
to similar models that use exact term proximity features.
The basic insight is that instead of recording exact term
positions, we divide documents into coarse-grained buckets
and record in which bucket the term occurs. We explore dif-
ferent approaches to defining and compressing the buckets.
Our best variant algorithm yields substantial reductions in
both index size and query evaluation time.

2. RELATED WORK
It is widely recognized that term proximity features con-

tribute to improvements in retrieval effectiveness over term-
based features (i.e., “bag of words”) alone. Early studies
date back to the 1980s [4], and there has been no shortage
of studies on the topic since then [3, 9, 1]. More recently,
Markov random fields [7] provide a theoretically-motivated
framework for understanding and reasoning about term de-
pendencies using undirected graphical models.

Of course, to support term proximity features, it is nec-
essary to store term position information in the postings.
Existing compression techniques for encoding positional in-
formation [10] can be considered lossless, and they achieve
different tradeoffs between compression rate and decoding
speed. Our work tackles an orthogonal issue related to rep-
resenting term positions, where we can take advantage of
previous work on compression.

One common approach to faster query evaluation is index
pruning [2]. Experiments have shown that it is possible to
discard postings that are unlikely to contribute much to a
document’s score, thus yielding a smaller index—translating
into faster ranking. Index pruning differs from our work in
that we retain all postings, but encode positional informa-
tion in a more compact (but lossy) manner.

3. RETRIEVAL MODEL
Our work uses linear feature-based ranking functions [7]

of the form S(Q,D) =
∑

j λjfj(Q,D), where Q is a query,

D is a document, fj(Q,D) is a feature function, and λj is
the weight assigned to feature j. More specifically, this work

1993

uses a particular instantiation of the Markov random field
model known as the sequential dependence (SD) model [7]:

S(Q,D) = λT
∑
q∈Q

fT (q,D) +

λU
∑

qj ,qj+1∈Q

fO(qj , qj+1, D) +

λO
∑

qj ,qj+1∈Q

fU (qj , qj+1, D)

where fT is defined over query unigrams, and fO and fU
are defined over query bigrams. The latter two are term
proximity features: fO corresponds to phrase matches and
fU corresponds to query term co-occurrence within a partic-
ular span. The λ’s are parameters that need to be learned.
The original formulation of the SD model defines features in
terms of language modeling query likelihoods with Dirichlet
smoothing [7]. Here, we adopt an alternative formulation
based on BM25 scores [8]. In practice, we have discovered
that BM25 scores are slightly more effective, but the differ-
ences are not statistically significant in most cases.

3.1 Approximate Positions
The central hypothesis we explore in this paper is whether

term proximity features based on approximate term posi-
tions are as effective as those based on exact term positions.
Our basic idea is that instead of storing exact term positions
in the index, we divide each document into coarser-grained
buckets and record the id (i.e., the sequential number) of the
bucket in which the term occurs.

We explored two different approaches to defining buckets:

Variable-Width Buckets. We can divide each document
into a fixed number of buckets b, where each bucket repre-
sents a span of term positions within that document. Under
this scheme, buckets in different documents will have dif-
ferent widths, which means that long documents receive a
coarser-grained treatment than short documents.

Fixed-Width Buckets. As an alternative, we can fix the
bucket size w and let the number of buckets in a document
vary with the document length. This in effect selects a single
level of granularity at which to model term positions in the
entire collection.

We explored two different approaches for coding bucket ids:

Integer Coding. We treat bucket ids as an array of inte-
gers and use standard gap-based compression techniques to
code them (using γ codes [10]).

Bit-Array Coding. Bucket positions are coded in a bit-
array. That is, the kth bit of the bit-array is set to one if the
kth bucket contains the term, or zero otherwise. This scheme
works well if the number of buckets is equal to a machine
word in the variable-width bucket scheme. Furthermore, as
an optimization, checking for term proximity (e.g., if two
terms are found in the same bucket) translates into efficient
bitwise operations.

Note that in both cases, we only code the presence or absence
of terms in a bucket, but not the number of terms that occur
in that bucket. In other words, the approximate positions
do not capture term frequency.

3.2 Proximity Features
To parallel the fO and fU term proximity features in the

sequential dependence model, we introduce the three fol-
lowing approximate proximity operators. Each operator is
defined over an adjacent pair of query terms (i.e., a query
bigram), just as the original features are:

• SameBucket(qj , qj+1, D) matches any positional bucket
that contains both qj and qj+1.

• OrdAdjBuckets(qj , qj+1, D) matches if qj occurs in
a bucket at position i and qj+1 occurs in a bucket at
position i+ 1. That is, the two terms must appear in
order across adjacent bins.

• UnordAdjBuckets(qj , qj+1, D) matches if qj occurs
in a bucket at position i and qj+1 occurs in the bucket
at position i− 1 or i+ 1, i.e., adjacent buckets. Unlike
the previous operator, which requires the two terms
to appear in the correct order, this operator allows for
unordered matches.

These features share the same functional form (i.e., weighted
using BM25) as their exact positional counterparts. To esti-
mate the parameters of our linear models, we employ greedy
feature selection—a simple but effective learning to rank ap-
proach that directly optimizes for the retrieval metric of in-
terest (e.g., MAP) described by Metzler [6].

4. EXPERIMENTAL EVALUATION
We implemented the approximate positional indexes de-

scribed above with Ivory [5]. Inverted indexes adopt a stan-
dard compression scheme: document id gaps are compressed
with Golomb codes and term frequencies are coded with γ
codes. For baselines, we created an index with no positional
information and an index with exact term positional infor-
mation. In the latter index, term positions are converted
into gap differences and compressed with γ codes.

Indexes were constructed using Hadoop, and retrieval ex-
periments were performed on a server with dual Intel Xeon
quad-core processors (E5620 2.4GHz), 64GB RAM, and six
2TB 7.2K RPM SATA drives in RAID-6 configuration (run-
ning Red Hat Linux). All experiments used a single thread
and performed retrieval on a single, monolithic index (i.e.,
no document partitioning), returning 1000 hits per query.

For evaluation, we used two TREC web collections: Gov2
(topics 701–850) and the first English segment of ClueWeb09
(topics 1–50). In each case, queries were split sequentially
into training and test sets of equal size. All parameters were
estimated on the training set and all results reported on the
test sets. Retrieval effectiveness is measured in terms of
mean average precision (MAP) and precision at 10 (P@10).
A one-side paired t-test (with p = 0.05) was used to deter-
mine the statistical significance of differences in the metrics.

4.1 Baselines and Approximate Models
We used the following baselines as points of compari-

son: classic BM25; BM25-sd, the basic sequential depen-
dence model with BM25 scores and default parameters; and
BM25-sd-t, a variant of BM25-sd for which the model pa-
rameters were trained on a per-collection basis. This al-
lowed the model to adapt to collection-specific characteris-
tics, rather than using the same default parameters for all
collections as is done with BM25-sd. Our BM25 runs used

1994

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

N
on

‐p
os

Va
r(
8)

Va
r(
16
)

Va
r(
32
)

Va
r(
64
)

Fi
xe
d(
10
)

Fi
xe
d(
20
)

Fi
xe
d(
30
)

Fi
xe
d(
40
)

Fi
xe
d(
50
)

%
 D
is
k
Sp
ac
e
Sa
vi
ng
s

Space Savings using Integer Coding
Gov2 Clue

‐100%

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

100%

N
on

‐p
os

Va
r(
8)

Va
r(
16
)

Va
r(
32
)

Va
r(
64
)

Fi
xe
d(
10
)

Fi
xe
d(
20
)

Fi
xe
d(
30
)

Fi
xe
d(
40
)

Fi
xe
d(
50
)

%
 D
is
k
Sp
ac
e
Sa
vi
ng
s

Space Savings using Bit‐array Coding

Gov2 Clue

‐261%
‐151%

‐108%

Figure 1: Percentage reduction in index size with
respect to exact positional indexes. Non-positional
indexes (left-most bars) provide upper bounds.

the non-positional indexes since they do not require any po-
sitional information for ranking documents, while the other
two baselines used the exact positional indexes, which were
needed to compute the exact term proximity features.

In our experiments, we used nine variants of approximate
positional indexes that have different bucket types: variable-
width buckets with number of buckets b = 8, 16, 32, 64—each
denoted as Var(b)—and fixed-width buckets with bucket size
w = 10, 20, 30, 40, 50—each denoted as Fixed(w).

4.2 Results
We now describe our experimental analysis of approximate

positional indexes and proximity features in terms of index
size, retrieval effectiveness, and query evaluation speed.

4.2.1 Index Size
Figure 1 compares the sizes of the approximate positional

indexes with respect to exact positional indexes. Bars plot
space savings, so higher is better. For reference, the left-
most bars show the space savings of non-positional indexes
(i.e., discarding positional information altogether), which
ranges between 76% to 82%. This serves as an upper bound.

The two collections exhibit similar patterns. As expected,
we notice that as the number of buckets per document (b)
increases in the variable-width models or as the bucket size
(w) deceases in the fixed-width models, the index size in-
creases (and thus the space savings decrease). In some cases,
the bit-array coding indexes are actually bigger than exact
positional indexes.

The figures also show a clear advantage to the integer
coding scheme in terms of index size (space savings range
from 29% to 66%) compared with the bit-array scheme.

MAP P@10
Gov2 Clue Gov2 Clue

Baselines
BM25 0.3162 0.2251 0.5787 0.3800
BM25-sd 0.3505 0.2312 0.5920 0.3800
BM25-sd-t 0.3447 0.2340 0.6107 0.3840

Variable width
b = 8 0.3223 0.2252* 0.5813 0.3800*
b = 16 0.3229 0.1933 0.5813* 0.2560
b = 32 0.3234 0.2250* 0.5813* 0.3800*
b = 64 0.3220 0.2067 0.5880* 0.3080

Fixed width
w = 10 0.3376 0.2256* 0.5920* 0.3760*
w = 20 0.3426* 0.2261* 0.5787* 0.3800*
w = 30 0.3385 0.2247* 0.5933* 0.3760*
w = 40 0.3382 0.2250* 0.5867* 0.3800*
w = 50 0.3346 0.2243* 0.5853* 0.3800*

Table 1: Retrieval effectiveness. Bold values indi-
cate stat. sig. over BM25; star-annotated and un-
derlined values indicate n.s. compared to BM25-sd
and BM25-sd-t, respectively.

4.2.2 Retrieval Effectiveness
Table 1 presents retrieval effectiveness in terms of MAP

and P@10 for the test collections. We annotated the ef-
fectiveness values to indicate results of significance testing
between the approximate positional models and the base-
lines: bold values indicate statistically-significant improve-
ments over BM25, and star-annotated and underlined val-
ues indicate no statistically-significant difference compared
with BM25-sd and BM25-sd-t, respectively.

MAP results reported in the table indicate that, in the
Gov2 collection, all approximate positional models exhibit
significant improvements over BM25. Moreover, all of the
fixed-width models have no statistically-significant differ-
ences with BM25-sd-t. While the MAP results are generally
in favor of our approximate models for Gov2, the Clue results
are more mixed. The table shows that the baselines aren’t
very different from each other, and this might explain the
lack of significant improvement of our approximate models
over BM25.

Although the P@10 results indicate that our approximate
models are not significantly better than BM25, the models
are also not statistically different from the other baselines
either. This suggests that term proximity features are better
at enhancing precision at lower ranks, since they consistently
improve MAP.

Considering the absolute MAP and P@10 scores in addi-
tion to the results of the statistical significance tests, we see
that the fixed-width models are consistently better than the
variable-width models. We hypothesize that variable-width
models introduce a great deal of variance (or noise) into
the proximity features (such as SameBucket) because win-
dow sizes vary greatly depending on the document length
(i.e., very short for short documents, very long for long
documents)—or more accurately, on the variance of doc-
ument lengths within a collection. If all documents have the
same length (i.e., zero variance), then Var(b) would behave
exactly the same as Fixed(avgdl/w). However, as the vari-
ance increases, the definition of proximity features becomes
less“consistent”, which ultimately yields noisy feature values
and thus less effective results.

1995

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

BM
25

BM
25

‐s
d

BM
25

‐s
d‐
t

Va
r(
8)

Va
r(
16
)

Va
r(
32
)

Va
r(
64
)

Fi
xe
d(
10

)

Fi
xe
d(
20

)

Fi
xe
d(
30

)

Fi
xe
d(
40

)

Fi
xe
d(
50

)

Re
la
tiv

e
Q
ET

Gov2
Integer coding Bit‐array coding

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

BM
25

BM
25

‐s
d

BM
25

‐s
d‐
t

Va
r(
8)

Va
r(
16
)

Va
r(
32
)

Va
r(
64
)

Fi
xe
d(
10

)

Fi
xe
d(
20

)

Fi
xe
d(
30

)

Fi
xe
d(
40

)

Fi
xe
d(
50

)

Re
la
tiv

e
Q
ET

Clue
Integer coding Bit‐array coding

Figure 2: Average normalized query execution time
of baselines and different approximations.

The results of the fixed-width models show that, as the
width of the bucket decreases, the effectiveness improves.
This is expected since smaller buckets yield more accurate
approximate positional information. Overall, the fixed-width
models Fixed(10) and Fixed(20) are the best among all the
approximate positional models.

4.2.3 Retrieval Efficiency
Figure 2 shows the average (over three trials) query ex-

ecution time (QET) for each collection across a variety of
approximate positional indexing strategies. The QET fig-
ures are normalized with respect to baseline BM25, which
uses the non-positional indexes, and thus the bars show how
much slower (in relative terms) the other conditions are.

Comparing integer and bit-array coding, we notice that
the latter is generally faster but not substantially. BM25-sd-t
is comparable to BM25-sd on Gov2. For Clue, the learned
BM25-sd-t model uses fewer features than BM25-sd, simply
as an artifact of the greedy feature selection algorithm, and
as a result it is substantially slower.

Rather than exhaustively explain all the results, we fo-
cus on the Fixed(10) and Fixed(20) models, which yielded
consistently strong effectiveness (from the previous section).
For Gov2, we observe a substantial reduction in QET with
the Fixed(20) model (−57%) compared to both variants of
the sd models. In the Fixed(10) model, the greedy feature
selection algorithm uses more features, and thus is substan-
tially slower. The results for Clue show that both Fixed(10)
and Fixed(20) are significantly faster (−57%) than BM25-sd
and exhibit comparable efficiency (−5%) to BM25-sd-t.

Overall, the Fixed(20) model not only exhibits effective-
ness that is comparable to the BM25-sd model, but also
strong efficiency characteristics—a substantial reduction in
index size and query execution time. This particular setting
nicely balances a small index footprint, good effectiveness,
and fast query execution.

5. CONCLUSIONS
Term proximity features are useful for a variety of search

tasks, especially those that deal with large collections such as
web search. However, full positional indexes can consume a
large amount of space and positionally-aware retrieval mod-
els that utilize such indexes are considerably slower than
their non-positional counterparts. To help minimize the
time and space costs of positional indexes, we proposed a
novel indexing strategy called approximate positional in-
dexes and a corresponding retrieval model. These indexes
break documents into fixed or variable width buckets and
encode which buckets a term occurs in, either using integer
or bit-array coding.

Our experimental results, carried out over two TREC web
collections, show that our proposed methods are able to
achieve comparable effectiveness to term-proximity models
based on full positional indexes, but with smaller indexes
and faster query execution times. Therefore, the proposed
methodology provides system designers with a viable “mid-
dle ground” in the efficiency-effectiveness tradeoff space to
better balance quality, time, and space.

6. ACKNOWLEDGMENTS
This work has been supported by NSF awards IIS-0836560,

IIS-0916043, and CCF-1018625. Any opinions expressed
are the authors’. The second author is grateful to Esther
and Kiri for their loving support and dedicates this work to
Joshua and Jacob.

7. REFERENCES
[1] S. Büttcher, C. Clarke, and B. Lushman. Term

proximity scoring for ad-hoc retrieval on very large
text collections. In SIGIR, 2006.

[2] D. Carmel, D. Cohen, R. Fagin, E. Farchi,
M. Herscovici, Y. Maarek, and A. Soffer. Static index
pruning for information retrieval systems. In SIGIR,
2001.

[3] W. Croft, H. Turtle, and D. Lewis. The use of phrases
and structured queries in information retrieval. In
SIGIR, 1991.

[4] J. Fagan. Experiments in automatic phrase indexing
for document retrieval: A comparison of syntactic and
non-syntactic methods. Technical report, Cornell
University, 1987.

[5] J. Lin, D. Metzler, T. Elsayed, and L. Wang. Of Ivory
and Smurfs: Loxodontan MapReduce experiments for
web search. In TREC, 2009.

[6] D. Metzler. Automatic feature selection in the Markov
random field model for information retrieval. In
CIKM, 2007.

[7] D. Metzler and W. Croft. A Markov random field
model for term dependencies. In SIGIR, 2005.

[8] S. Robertson, S. Walker, M. Hancock-Beaulieu,
M. Gatford, and A. Payne. Okapi at TREC-4. In
TREC, 1995.

[9] M. Srikanth and R. Srihari. Biterm language models
for document retrieval. In SIGIR, 2002.

[10] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

1996

