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ABSTRACT

Most modern web search engines employ a two-phase rank-
ing strategy: a candidate list of documents is generated us-
ing a “cheap” but low-quality scoring function, which is then
reranked by an “expensive” but high-quality method (usu-
ally machine-learned). This paper focuses on the problem
of candidate generation for conjunctive query processing in
this context. We describe and evaluate a fast, approzimate
postings list intersection algorithms based on Bloom filters.
Due to the power of modern learning-to-rank techniques
and emphasis on early precision, significant speedups can
be achieved without loss of end-to-end retrieval effectiveness.
Explorations reveal a rich design space where effectiveness
and efficiency can be balanced in response to specific hard-
ware configurations and application scenarios.

Categories and Subject Descriptors: H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Keywords: scalability, efficiency, conjunctive queries

1. INTRODUCTION

There is general consensus that the challenge of docu-
ment ranking is best tackled using machine learning tech-
niques [11, 9]. This “learning to rank” approach generally
assumes that a candidate list of potentially-relevant docu-
ments has already been gathered by other means. Thus,
learning to rank is actually a reranking problem, using, for
example, boosted regression trees [5, 9]. Hence, modern web
search can be viewed as a two-phase process: candidate gen-
eration followed by reranking.

This paper focuses on the problem of candidate gener-
ation for learning to rank algorithms. Following previous
work, we operationalize this as postings list intersection [4,
17]. Our intuition is that modern rankers are relatively in-
sensitive to the quality of the candidate list. As long as this
intermediate product is of “reasonable” quality, the end re-
sult will remain good—particularly in the web context due
to its emphasis on early precision. Thus, our goal is to gen-
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erate candidate documents as quickly as possible, even at
the cost of introducing approximations.

We see this work as having two main contributions: First,
we propose a novel algorithm for postings list intersection
that takes advantage of Bloom filters. Evaluations on real
world data show that it is fast, yet does not sacrifice end-to-
end retrieval effectiveness. Second, we empirically character-
ize the tradeoff space between effectiveness (result quality),
time (retrieval speed), and space (index size), illustrating
how these three aspects can be traded off for each other.

2. BACKGROUND AND RELATED WORK

For modern web retrieval, query evaluation is often bro-
ken into two phases [4, 17]. In the first phase, a fast, “cheap”
algorithm generates a candidate list of potentially-relevant
documents (e.g., using interpolated BM25 and static prior).
In most cases, queries are processed conjunctively, i.e., only
documents that contain all the query terms are considered.
For web-scale collections, this leads to higher early precision
and faster query evaluation [4]. The candidate documents
from the first phase are then reranked by a slower, “expen-
sive” but better (machine learned) algorithm (e.g., boosted
regression trees [5, 9]). Within this general setup, our work
focuses on the candidate generation process.

Conjunctive query processing requires solving the prob-
lem of postings list intersection, which has been studied in
detail [8, 1, 18]. In particular, we use the eliminator-based
“small adaptive” algorithm proposed by Demaine et al. [§]
as the baseline. Although Bloom filters have been used in
P2P retrieval systems [12] and retrieval based on bit signa-
tures [16], to our knowledge this application is novel.

3. APPROACH

The starting point of this work is that modern learning-
to-rank approaches for web search are sufficiently powerful
to return high-quality results as long as they are presented
with a “reasonable” candidate list of documents—especially
based on metrics that focus on early precision. As a result,
we can leverage probabilistic data structures to speed up
candidate generation (postings list intersection). Given a
query @, the task is to retrieve the top n documents, based
on a query-independent score, that contain all the query
terms. As is the case with commercial web search engines,
we assume that all index structures are held in memory.

In most collections, documents are arbitrarily numbered,
so document-sorted indexes do not provide any scoring or
ranking. To address this issue, we renumber the collec-
tion so that document ids are assigned based on a query-
independent score (e.g., PageRank or spam scores). In our



case, the smallest document id is assigned to the document
estimated to have the highest quality, and documents are
successively numbered in order of decreasing page quality,
with ties broken arbitrarily. With this “renumbering trick,”
postings now implicitly capture ranking information, which
provides early termination: if we wish to generate top n doc-
uments (in terms of the query-independent score), we tra-
verse postings in order and stop when we’ve gathered enough
documents. Finally, since document ids are guaranteed to
be in ascending order, we can continue to use efficient gap-
based techniques to compress postings. Following standard
practice, we use PForDelta [19]. Note that since we focus on
postings list intersection, there is no need to store tfs and
positional information in the index.

The core contribution of this work is a novel algorithm
for postings list intersection using Bloom filters. In our ap-
proach, each postings list is stored both as a compressed
sequence of integers and as a Bloom filter [2]. A Bloom
filter is a fast, compact data structure that supports O(1)
approximate set membership tests; that is, the Bloom filter
representation of a postings list allows us to quickly answer
the question, “is this document id contained in the postings
list?” The relevant parameters for a Bloom filter are r (bits
per element) and k (number of hash functions), which we
fix for all Bloom filters in the index. Given a parameter
setting, we can analytically model the false positive rate, as
provided by Bose et al. [3]. In the interest of space, we do
not repeat the bounds or the derivation here.

The postings list intersection algorithm proceeds as fol-
lows: for a query @ with |Q| terms, we find the term ¢ with
the smallest document frequency (i.e., least frequent query
term) and look up its standard postings list. We refer to this
as the base postings list. This postings list is then traversed:
walking down the list of document ids, the algorithm probes
the Bloom filter representation of postings lists correspond-
ing to the other query terms to compute the set intersection.
A document is added to the candidate list if all member-
ship tests pass. Since the base postings list is sorted by the
query-independent score, to generate a list of n candidate
documents we only need to traverse the base postings list
until the n., matching document is decoded, thereby allow-
ing early termination. In our experiments, we set n to be
10000, but this parameter can be tuned to the application
scenario. The approximation aspect of our algorithm lies in
the fact that Bloom filters can produce false positives—that
is, a filter can assert that an element is contained within it,
even when in reality the element was never inserted.

When constructing Bloom filter representations for a col-
lection of N documents, it is clear that by fixing r (bits per
element), the size of the Bloom filters for postings lists that
have more than 0; = g elements exceeds N bits. Thus,
for very frequent terms, we replace the Bloom filter with a
bit-array index. Not only does this reduce the false positive
rate to zero, but it also obviates the need to compute hash
values, thereby increasing the speed of the probes.

For postings lists with n < 0; elements, we build a Bloom
filter with £ hash functions and r x n bit positions. We use
the Jenkins integer hash function, with the form h(z,S),
where S is a seed. For Bloom filter setting k£ = 1, we simply
use a large prime number as the seed and compute h(z, S)
mod (n X r) as the hash value, for a particular setting of
r on a postings list with n postings. For k > 1, the ny,
hash value is computed by seeding the (n — 1), hash value
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to h(xz,S) mod (n x r). Recognizing the accuracy, time,
and space tradeoffs discussed above, we experimented with
a range of settings to empirically quantify the effects.

4. EXPERIMENTAL SETUP

We performed experiments on the first English segment of
the ClueWeb09 collection. For our query-independent score,
we used the Waterloo spam scores [7]. After document id
reassignment (see Section 3), we compressed postings lists
(document ids only) using PForDelta with a block size of
128. The compressed postings lists total 13.88 GB in size.
We used two different sets of queries for evaluation. The
50 queries from the TREC 2009 web track were used for
effectiveness experiments. For efficiency, we used the AOL
query log [15], which contains around 10 million queries.

Implementations of the algorithms in this paper are in
Java, built on top of the open-source Ivory toolkit [13].
We used LinkedIn’s PForDelta implementation in the open-
source Kamikaze package.! Following standard practice, we
used gap-compressed PForDelta [19] (block size of 128) for
the baseline implementation (small adaptive). The choice of
Java puts us at a disadvantage compared to, say, implemen-
tations in C/C++. Since our task is an intermediate step
in a retrieval pipeline, ease of component integration is im-
portant. For this, Java holds a number of advantages in to-
day’s software ecosystem—for example, Twitter’s real-time
search engine, which serves over 2 billion queries per day,
is implemented in Java [6]. Regardless, since all implemen-
tations are in the same language, the comparison remains
fair—were we to reimplement everything in C/C++, the
relative results should remain the same. We have put in a
best faith effort to optimize the small adaptive algorithm in
our implementation. Thus, we are confident that observed
differences are not caused by neglect or an underperform-
ing baseline. Finally, we note that all implementations are
presently single-threaded.

Although the focus of this work is on fast postings list in-
tersection, to illustrate end-to-end retrieval effectiveness, we
implemented a simple learning-to-rank algorithm to rerank
the candidate documents. We used the simple greedy fea-
ture selection algorithm proposed by Metzler [14] with a
standard set of features, which include basic information re-
trieval scores (e.g., BM25 and language modeling scores),
term proximity features (e.g., exact phrase, ordered and
unordered windows), and query-independent features (e.g.,
spam score). There are a total of 43 features. We performed
two-fold cross-validation optimizing NDCG.

Experiments were performed on a server running Red Hat
Linux, with dual Intel Xeon “Westmere” quad-core proces-
sors (E5620 2.4GHz) and 128GB RAM. This particular ar-
chitecture has a 64KB L1 cache per core, split between data
and instructions; a 256 KB L2 cache per core; and a 12MB L3
cache shared by all cores (of a single processor). As stated
previously, we assume all index structures are completely
held in memory. This is not an unreasonable assumption
given the capabilities of commodity servers today—and as
we shall see, the memory requirements are modest.

There are three important considerations in the design
of search engines: effectiveness (result quality), time (query
evaluation speed), and space (index size). The last two are
straightforward to measure. Query evaluation speed is mea-
sured in terms of latency, the per-query time required for

1http ://sna-projects.com/kamikaze/



LAR[L [2 [3 |
8 | 74.95 | 85.34 | 89.09
16 | 84.80 | 93.63 | 97.59
24 | 93.96 | 98.04 | 99.81

Table 1: Relative recall for the TREC 2009 queries com-
pared to exact postings list intersection.

performing postings list intersection. Index size can be eas-
ily computed. A setting of r yields Bloom filters of a par-
ticular size (unaffected by k). We apply the optimization
described in Section 3, where very long postings lists are re-
placed with bit arrays, such that the maximum size required
for any term is the size of the document collection in bits.

Finally, effectiveness: we report both component-level and
end-to-end metrics. At the component level, relative recall
with respect to exact postings list intersection (i.e., small
adaptive) best captures output quality. That is, of all rele-
vant documents retrieved by the ezact algorithm, what frac-
tion is returned by our approzimate algorithm (factoring in
errors introduced by the Bloom filters). More precisely, rel-
ative recall is computed via micro-averaging (i.e., computed
per topic, then averaged across topics); this has the effect of
disproportionately weighting topics that have fewer relevant
documents (which is desirable, in our case).

The other aspect of effectiveness is end-to-end effective-
ness. Given the emphasis on early precision in the context
of web search, we measured NDCG at cutoff n [10], a well
established metric for these types of search tasks. For the
second stage reranker we used the linear model described
above, whose quality on our limited feature set is on par
with state-of-the-art tree-based methods.

5. RESULTS
5.1 Effectiveness

The relative recall of our approximate postings list inter-
section algorithm with various settings of r (bits per post-
ing) and k& (number of hash functions) is shown in Table 1
on the TREC 2009 web track queries (for a candidate list
containing the top 10000 hits sorted by spam score).

These results are exactly what we would expect: Increas-
ing the number of hash functions k reduces the false posi-
tive rate and hence improves recall. Increasing the number
of bits per element r reduces hash collisions, thereby reduc-
ing the false positive rate and increasing recall. There is,
of course, no free lunch: larger values of r increase memory
requirements and larger values of k reduce speed.

For the end-to-end evaluation, output of the candidate
generation phase (by our approximate postings list intersec-
tion algorithm and the exact baseline) were reranked by the
linear machine-learned model described in Section 3. For
each value of r and k in Table 1, we compared the two out-
puts in terms of NDCG@({1, 3,5,10,20}. We omit the re-
sults here in the interest of space, but Wilcoxon tests (with
p = 0.05) showed no significant difference in NDCG values.

These results empirically validate the assumption that un-
derlies our work: that modern machine-learned ranking func-
tions are sufficiently powerful to deliver high quality results
as long as they are presented with a “reasonable” set of candi-
date documents. This is particularly true with the emphasis
on early precision in web search—for example, to obtain a
perfect NDCG@Q1 score, the ranker simply needs to iden-
tify one relevant document (of the highest relevance grade).
Therefore, the fact that the relative recall of our approx-
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[NE]1T | 2 [3 |
8 5.35 (£0.26) | 7.73 (£0.37) | 8.53 (£0.24)
16 | 4.94 (£0.21) | 6.08 (£0.38) | 6.41 (£0.39)
24 | 4.40 (£0.11) | 5.09 (£0.13) | 5.46 (£0.25)
Table 2: Average query latency (ms) for the AOL

queries across 10 trials, with 95% confidence intervals.

imate postings list intersection algorithm isn’t perfect has
no statistically significant impact on end-to-end NDCG.

5.2 Efficiency

Average query latency of our approximate postings list
intersection algorithm on the AOL queries is shown in Ta-
ble 2, for different values of r (bits per posting) and k
(number of hash functions). Reported values represent the
average across 10 trials for each parameter setting, along
with the 95% confidence interval. Our best configuration is
r =24,k = 1, with an average query latency of 4.4ms; this
achieves 93.96% relative recall compared to the baseline (see
Table 1). If a higher relative recall is desired, r = 24,k = 2
is a good option, at 5.09ms per query and a relative recall of
98.04%. However, since in all our effectiveness experiments,
end-to-end NDCG was statistically indistinguishable from
the exact baseline, there does not appear to be a downside
to simply selecting the fastest configuration.

As we would expect, increasing k increases average query
latency, since it requires computing more hash values and
probing additional bit positions. Increasing r, however, calls
into play two counteracting factors. On the one hand, in-
creasing r leads to larger Bloom filters and hence less lo-
cality, which translates into more cache misses and longer
memory latencies. However, on the other hand, as the size
of the Bloom filter increases the false positive rate drops,
and therefore fewer hash computations are needed to reject
a non-existent document id. Empirically, we see that the sec-
ond effect is stronger for the range of r values we explored:
r = 24 yields the fastest speed for all values of k.

Figure 1 show average query latency for the AOL queries,
broken down by query length (i.e., number of query terms
after tokenization, stopword removal, etc.). As expected,
query latency increases for longer queries, due to the need
for more Bloom filter membership tests. However, beyond
a certain point, latency levels off and even drops due to the
appearance of rare terms in longer queries. With conjunctive
query processing, in the worst case we need to only traverse
the postings list of the least frequent term and can remove
a document from consideration as soon as the membership
test for a query term fails.

A final interesting observation: as r becomes larger, run-
ning time becomes less sensitive to k. In other words, in-
creasing k increases query time less with larger values of r
than with smaller values of r. This is because greater r re-
duces the probability of hash collisions, and our Bloom filter
probing method early exits as soon as it finds an unset bit.

As a reference, the average query latency for exact post-
ings list intersection using the small adaptive algorithm was
87.3ms on the AOL queries (for 10000 hits). Not only is
small adaptive much slower overall, but query latency in-
creases with longer queries. As discussed earlier, we put in
a best faith effort to optimize our implementation, so we are
confident that this represents a fair comparison.

We believe that one contributing reason for the slow speed
of small adaptive is the amount of PForDelta decoding that
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Figure 1: Effect of query length on latency using the AOL queries.

it must perform. In our Bloom filter algorithm, we only
need to decode postings corresponding to the least frequent
query term; and we only need to decode as many blocks as
is necessary to accumulate 10000 candidate documents. The
small adaptive algorithm, on the other hand, needs to de-
code postings for all query terms—and because PForDelta is
blocked-based, probing an element (i.e., in binary search) re-
quires reconstructing document ids for the entire block. As a
result, small adaptive is highly dependent on the raw decod-
ing speed of the PForDelta implementation, and this may be
where language choice makes a significant difference. In all
our algorithms we use the Kamikaze package for PForDelta
compression, which was released by LinkedIn and represents
an “industrial-strength” implementation. While it is perhaps
true that a C/C++ reimplementation of our techniques may
be faster, we are confident that the relative performance dif-
ferences will hold, since Bloom filters will also benefit from
a more efficient implementation.

Furthermore, we note that the small adaptive algorithm
has aspects that are not cache friendly. Although there is
definitely a dominant memory access pattern as postings
are consumed, the binary search for locating the elimina-
tor suffers from poor locality: subsequent probes move in
unpredictable directions (thus, difficult to pre-fetch), not to
mention further slowdowns by branch mispredicts.

Our third dimension of evaluation is index size, which is
the amount of space required by the Bloom filters. As a ref-
erence, for the first segment of ClueWeb09 (around 50 mil-
lion pages), the base postings lists (document ids only) total
13.88 GB in size. For our postings list intersection algorithm
to work, we need additional space for the Bloom filters: with
r = 8, an additional 11.67 GB; r = 16, 20.24 GB; r = 24,
27.40 GB. In terms of modern server configurations, these re-
quirements are quite reasonable—in a mid-range commodity
server today, one might expect 64GB RAM, which is more
then sufficient to serve document partitions of the size we
consider here.

6. CONCLUSION

This work tackles the problem of candidate generation in
a two-phase retrieval architecture. Since powerful machine-
learned rerankers are typically applied in the second phase,
end-to-end retrieval effectiveness can be maintained as long
as the candidate generation phase returns “reasonable” re-
sults. Thus, we can “cut corners” with approximate al-
gorithms to speed up candidate generation—we propose a
novel postings list intersection algorithm based on Bloom
filters to accomplish this. Experiments showed that the al-
gorithm is much faster than the small adaptive baseline, and
yields end-to-end NDCG measures that are indistinguishable
from those generated with the exact algorithm.
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